Antioxidant, Hypoglycemic and Neuroprotective Activities of Extracts from Fruits Native to the Amazon Region: A Review

Main Article Content

Klenicy Kazumy de Lima Yamaguchi
Anderson de Oliveira Souza

Abstract

The Amazon forest has the largest biome on the planet, and it is estimated that only 16 to 20% of the identified animal, and plant biodiversity. Considering plant diversity, we will highlight the biological properties of the fruits extracts of Arecaceae, Caryocaraceae, Malvaceae, Myrtaceae, Sapindaceae, and Solanaceae’s families due to their significant biological actions. This review presents the antioxidant, glycemic control, and neuroprotective activities from ten fruit extracts distributed in six botanical families in the Amazon region. We obtained 801 publications (described from 2010 to 2020), of which 64 articles were selected by the benchmark previously chosen. The antioxidant effect was the dominant effect observed in the studies used for this review, followed by glycemic control and protective actions in neurons. This review provides a synopsis of the recent literature exploring the extracts from native fruits to the Amazon region that could efficiently prevent pathologies associated with oxidative stress, and cellular maintenance mechanisms. 

Keywords:
Amazonian extracts, nutrient-rich food, secondary metabolism, biological activities.

Article Details

How to Cite
Yamaguchi, K. K. de L., & Souza, A. de O. (2020). Antioxidant, Hypoglycemic and Neuroprotective Activities of Extracts from Fruits Native to the Amazon Region: A Review. Biotechnology Journal International, 24(6), 9-31. https://doi.org/10.9734/bji/2020/v24i630119
Section
Review Article

References

Darios F, Stevanin, G. Impairment of lysosome function and autophagy in rare neurodegenerative diseases. J. Mol. Biol. in press; 2020. Available:https://doi.org/10.1016/j.jmb.2020.02.033

Costa RS, Santos OV, Lannes SCS, Casazza AA, Aliakbarian B, Perego P, Ribeiro-Costa RM, Converti A, Silva Júnior JOC. Bioactive compounds and value-added applications of cupuassu (Theobroma grandiflorum Schum.) agroindustrial by-product. Food Sci. Technol. 2020;40:401-407. Available:http://dx.doi.org/10.1590/fst.01119

Souza JJLL, Fontes MPF, Gilkes R, Costa LM, Oliveira TS. Geochemical signature of Amazon tropical rainforest soils. Rev. Bras. Ciênc. Solo. 2018;42:e0170192. Available:http://dx.doi.org/10.1590/18069657rbcs20170192

Begossi A, Salivonchyk SV, Hallwass G, Hanazaki N, Lopes PFM, Silvano RAM, Dumaresq D, Pittock J. Fish consumption on the Amazon: A review of biodiversity, hydropower and food security issues. Braz. J. Biol. 2019;79:345-357. Available:https://doi.org/10.1590/1519-6984.186572

Moraes VH, Müller CH, Souza AGC, Antônio IC. Native fruits species of economic potential from the Brazilian Amazon. J. Appl. Botany. 1994;68:47-52. Available:https://agris.fao.org/agris-search/search.do?recordID=DE95H0092

Chisté RC, Freitas M, Mercadante AZ, Fernandes E. The potential of extracts of Caryocar villosum pulp to scavenge reactive oxygen and nitrogen species. Food Chem. 2012;135:1740-1749. Available:https://doi.org/10.1016/j.foodchem.2012.06.027

Cabral FL, Bernardes VM, Passos DF, Oliveira JS, Doleski PH, Silveira KL, Horvarth MC, Bremm JM, Barbisan F, Azzolin VF, Teixeira CF, Andrade CM, Cruz IBM, Ribeiro EE, Leal DBR. Astrocaryum aculeatum fruit improves inflammation and redox balance in phytohemagglutinin-stimulated macrophages. J. Ethnopharmacol. 2020;247:112274. Available:https://doi.org/10.1016/j.jep.2019.112274

Nascimento OV, Boleti APA, Yuyama LKO, Lima ES. Effects of diet supplementation with camu-camu (Myrciaria dubia HBK McVaugh) fruit in a rat model of diet-induced obesity. An. Acad. Bras. Ciênc. 2013;85:355-363. Available:http://dx.doi.org/10.1590/S0001-37652013005000001

Lamarão CV, Gomes MLS, Martins GAS, Rolim CSS, Yamaguchi KKL, Saraiva-Bonatto EC, Silva CC, Veiga Júnior VF. Antioxidantes inorgânicos em frutos amazônicos. Braz. J. Dev. 2020;6:12237-12253. Available:https://doi.org/10.34117/bjdv6n3-184

Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019;11:155. Available:https://doi.org/10.3389/fnagi.2019.00155

Teles RBA, Diniz TC, Pinto TCC, Júnior RGO, Silva MG, Lavor EM, Fernandes AWC, Oliveira AP, Ribeiro FPRA, Silva AAM, Cavalcante TCF, Quintans Júnior LJ, Almeida JRGS. Flavonoids as therapeutic agents in Alzheimer’s and Parkinson’s diseases: A systematic review of preclinical evidences. Oxid. Med. Cell. Longev. 2018; 7043213. Available:https://doi.org/10.1155/2018/7043213

Lima ACB. Flavors of t Available:https://www.scielo.br/pdf/bgoeldi/v9n1/06.pdf

Eiserhardt WL, Svenning JC, Kissling WD, Balslev H. Geographical ecology of the palms (Arecaceae): Determinants of diversity and distributions across spartial scales. Ann. Bot. 2011;108:1391-1416. Available:https://doi.org/10.1093/aob/mcr146

Cámara-Leret R, Paniagua-Zambrana N, Svenning JC, Balslev H, Macía MJ. Geospatial patterns in traditional knowledge serve in assessing intelectual property rights and benefit-sharing in northwest South America. J. Ethnopharmacol. 2014;158:58-65. Available:https://doi.org/10.1016/j.jep.2014.10.009

Clement CR, Lleras Pérez E, Van Leeuwen J. O potencial das palmeiras tropicais no Brasil: Acertos e fracassos das últimas décadas. Agrociências. 2005;9:67-71. Available:https://www.embrapa.br/busca-de-publicacoes/-/publicacao/678989/o-potencial-das-palmeiras-tropicais-no-brasil-acertos-e-fracassos-das-ultimas-decadas

Basto GJ, Carvalho CWP, Soares AG, Costa HTGB, Chávez DWH, Godoy RLO, Pacheco S. Physicochemical properties and carotenoid content of extruded and non-extruded corn and peach palm (Bactris gasipaes, Kunth). Food Sci. Technol. 2016;69:312-318. Available:https://doi.org/10.1016/j.lwt.2015.12.065

Bataglion GA, Silva FMA, Eberlin MN, Koolen HHF. Simultaneous quantification of phenolic compounds in buriti fruit (Mauritia flexuosa L. f.) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Food Res. Int. 2014;66:396-400. Available:https://doi.org/10.1016/j.foodres.2014.09.035

Bonomo LF, Silva DN, Boasquivis PF, Paiva FA, Guerra JFC, Martins TAF, Torres AGJ, Paula ITBR, Caneschi WL, Jacolot P, Grossin N, Tessier FJ, Boulanger E, Silva ME, Pedrosa ML, Oliveira RP. Açaí (Euterpe oleracea Mart.) modulates oxidative stress resistance in Caenorhabditis elegans by direct and indirect mechanisms. PLoS One. 2014;9:e89933. Available:https://doi.org/10.1371/journal.pone.0089933

Machado AK, Andreazza AC, Da Silva TM, Boligon AA, Do Nascimento V, Scola G, Doung A, Cadoná FC, Ribeiro EE, Cruz IBM. Neuroprotective effects of Açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxid. Med. Cell. Longev. 2016;8940850. Available:https://doi.org/10.1155/2016/8940850

Sagrillo MR, Garcia LFM, Souza Filho OC, Duarte MMMF, Ribeiro EE, Cadoná FC, Cruz IBM. Tucumã fruit extracts (Astrocaryum aculeatum Meyer) decrease cytotoxic effects of hydrogen peroxide on human lymphocytes. Food Chem. 2015; 173:741-748. Available:https://doi.org/10.1016/j.foodchem.2014.10.067

Cândido TLN, Silva MR, Agostini-Costa TS. Bioactive compounds and antioxidant capacity of Buriti (Mauritia flexuosa L.f.) from the Cerrado and Amazon biomes. Food Chem. 2015;177:313-319. Available:https://doi.org/10.1016/j.foodchem.2015.01.041

Jatunov S, Quesada S, Díaz C, Murillo E. Carotenoid composition and natioxidant activity of the raw and boiled fruit mesocarp of six varieties of Bactris gasipaes. Arch. LatinoAm. Nutr. 2010;60: 99-104. Available:https://www.alanrevista.org/ediciones/2010/1/art-15/

Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Júnior VF. Amazon Acai: Chemistry and biological activities: A review. Food Chem. 2015;179:137-151. Available:https://doi.org/10.1016/j.foodchem.2015.01.055

Santos MFG, Alves RE, Brito ES, Silva SM, Silveira MRS. Quality characteristics of fruits and oils of palms native to the Brazilian Amazon. Rev. Bras. Frutic. 2017; 39:e-305. Available:https://doi.org/10.1590/0100-29452017305

Yamaguchi KKL, Lamarão CV, Aranha ESP, Souza ROS, Oliveira PDA, Vasconcellos MC, Lima ES, Veiga-Júnior VF. HPLC-DAD profile of phenolic compounds, cytotoxicity, antioxidant and anti-inflammatory activities of the Amazon fruit Caryocar villosum. Quím. Nova. 2017; 40:483-490. Available:https://doi.org/10.21577/0100-4042.20170028

Oliveira LM, Oliveira TS, Costa RM, Martins JLR, Freitas CS, Gil ES, Costa EA, Passaglia RCAT, Vaz BC, Filgueira FP, Ghedini PC. Caryocar brasiliense induces vasorelaxation through endotelial Ca2+/calmodulin and PI3K/Akt/eNOS-dependent signaling pathways in rats. Rev. Bras. Farmacogn. 2018;28:678-685. Available:http://dx.doi.org/10.1016/j.bjp.2018.07.007

Ascari J, Takahashi JA, Boaventura MAD. The phytochemistry and biological aspects of Caryocaraceae. Rev. Bras. Plantas Med. 2013;15:293-308. Available:http://dx.doi.org/10.1590/S1516-05722013000200019

Chisté RC, Mercadante AZ. Identification and quantification, by HPLC-DAD-MS/MS of carotenoids and phenolic compounds from the Amazonian fruits Caryocar villosum. J. Agric. Food Chem. 2012;60: 5884-5892. Available:https://doi.org/10.1021/jf301904f

Erarslan ZB, Koçyigit M. The important taxonomic characteristics of the family Malvaceae and the herbarium specimens in ISTE. Turk. J. Biosci. Collect. 2019;3:1-7. Available:https://doi.org/10.26650/tjbc.20190001

Avila-Sosa R, Montero-Rodriguez AF, Aguilar-Alonso P, Vera-López O, Lazcano-Hernández M, Morales-Medina JC, Navarro-Cruz AR. Antioxidant properties of Amazonian fruits: A mini review of in vivo and in vitro studies. Oxid. Med. Cell. Longev. 2019;8204129. Available:https://doi.org/10.1155/2019/8204129

Oliveira TB, Genovese MI. Chemical composition of cupuassu (Theobroma grandiflorum) and cocoa (Theobroma cacao) liquors and their effects on streptozotocin-induced diabetic rats. Food Res. Int. 2013;51:929-935. Available:https://doi.org/10.1016/j.foodres.2013.02.019

Grattapaglia D, Vaillancourt RE, Shepherd M, Thumma BR, Foley W, Külheim C, Potts BM, Myburg AA. Progress in Myrtaceae genetics and genomics: Eucalyptus as the pivotal genus. Tree Genet. Genomes. 2012;8:463-508. Available:https://doi.org/10.1007/s11295-012-0491-x

Garzón GA, Narváez-Cuenca CE, Kopec RE, Barry AM, Riedl KM, Schwartz SJ. Determination of carotenoids, total phenolic content, and antioxidant activity of Arazá (Eugenia stipitata McVaugh), an Amazonian fruit. J. Agric. Food Chem. 2012;60:4709-4717. Available:https://doi.org/10.1021/jf205347f

Chirinos R, Galarza J, Betalleluz-Pallardel I, Pedreschi R, Campos D. Antioxidant compounds and antioxidant capacity of peruvian camu-camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages. Food Chem. 2010;120:1019-1024. Available:https://doi.org/10.1016/j.foodchem.2009.11.041

Buerki S, Forest F, Acevedo-Rodríguez P, Callmander MW, Nylander JAA, Harrington M, Sanmartín I, Küpfer P, Alvarez N. Plastic and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Mol. Phylogenet. Evol. 2009;51:238-258. Available:https://doi.org/10.1016/j.ympev.2009.01.012

Marques LLM, Ferreira EDF, Paula MN, Klein T, Mello JCP. Paullinia cupana: A multipurpose plant – A review. Braz. J. Pharmacog. 2019;29:77-110. Available:https://doi.org/10.1016/j.bjp.2018.08.007

Bittencourt LS, Zeidán-Chuliá F, Yatsu FKJ, Schnorr CE, Moresco KS, Kolling EA, Gelain DP, Bassani VL, Moreira JCF. Guarana (Paullinia cupana Mart.) prevents -amyloid aggregation, generation of advanced glycation-end products (AGEs), and acrolein-induced cytotoxicity on human neuronal-like cells. Phytother. Res. 2014;28:1615-1624. Available:https://doi.org/10.1002/ptr.5173

Pinaffi ACC, Sampaio GR, Soares MJ, Shahidi F, Camargo AC, Torres EAFS. Insoluble-bound polyphenols released from guarana powder: Inhibition of alpha-glucosidade and proanthocyanidin profile. Molecules. 2020;25:679. Available:https://doi.org/10.3390/molecules25030679

Hernandes LC, Aissa AF, Almeida MR, Darin JDC, Rodrigues E, Batista BL, Barbosa Júnior F, Mercadante AZ, Bianchi MLP, Antunes LMG. In vivo assessment of the cytotoxic, genotoxic and antigenotoxic potential of maná-cubiu (Solanum sessiliflorum Dunal) fruit. Food Res. Int. 2014;62:121-127. Available:https://doi.org/10.1016/j.foodres.2014.02.036

Coelho CP, Gomes DC, Guilherme FAG, Souza LF. Reproductive biology of endemic Solanum melissarum Bohs (Solanaceae) and updating of its current geographic distribution as the basis for its conservation in the Brazilian Cerrado. Braz. J. Biol. 2017;77:809-819. Available:https://doi.org/10.1590/1519-6984.01516

Shah VV, Shah ND, Patrekar PV. Medicinal plants from Solanaceae family. Res. J. Pharm. Technol. 2013;6:143-151. Available:https://www.researchgate.net/publication/298170398_Medicinal_plants_from_solanaceae_family

Cardona JEC, Cuca LE, Barrera JA. Determination of some secondary metabolites in three ethnovarieties of cocona (Solanum sessiliflorum Dunal). Rev. Colomb. de Química. 2011;40:185-200. Available:http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-28042011000200004

Kaunda JS, Zhang YJ. The Genus Solanum: An ethnopharmacological, phytochemical and biological properties review. Nat. Products Bioprospect. 2019;9: 77-137. Available:https://doi.org/10.1007/s13659-019-0201-6

Halliwell B. Oxidative stress and neurodegenerative: where are we now? J. Neurochem. 2006;97:1634-1658. Available:https://doi.org/10.1111/j.1471-4159.2006.03907.x

Sousa CMM, Silva HR, Vieira-Jr GM, Ayres MCC, Costa CLS, Araújo DS, Cavalcante LCD, Barros EDS, Araújo PBM, Brandão MS, Chaves MH. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quím. Nova. 2007;30: 351-355. Available:https://doi.org/10.1590/S0100-40422007000200021

Ferreira ALA, Matsubara LS. Radicais livres: Conceitos, doenças relacionadas, sistema de defesa e estresse oxidativo. Rev. Ass. Med. Bras. 1997;43:61-68. Available:https://www.scielo.br/pdf/ramb/v43n1/2075.pdf

Apak R, Özyürek M, Güçlü K, Çapanoglu E. Antioxidant activity/capacity measurement. Reactive oxygen and nitrogen species (ROS/RNS) scavenging assays, oxidative stress biomarkers, and chromatographic/chemometric assays. J. Agric. Food Chem. 2016;64:1046-1070. Available:https://doi.org/10.1021/acs.jafc.5b04744

Álvarez A, Jiménez A, Méndez J, Murillo E. Chemical and biological study of Eugenia stipitate Mc Vaugh collected in the Colombian Andean Region. Asian J. Pharm. Clin. Res. 2018;11:362-369. Available:https://doi.org/10.22159/ajpcr.2018.v11i12.27253

Neri-Numa IA, Carvalho-Silva LB, Morales JP, Malta LG, Muramoto MT, Ferreira JEM, Morales JP, Malta LG, Carvalho-Silva LB, Maróstica Junior MR, Muramoto MT. Evaluation of the antioxidant, antiproliferative and antimutagenic potential of araçá-boi fruit (Eugenia stipitate Mc Vaugh - Myrtaceae) of the Brazilian Amazon forest. Food Res. Int. 2013;50:70-76. Available:https://doi.org/10.1016/j.foodres.2012.09.032

Vasavilbazo-Saucedo A, Almaraz-Abarca N, González-Ocampo HA, Ávila-Reyes JA, González-Valdez LS, Luna-González A, Delgado-Alvarado EA, Torres-Ricario R. Phytochemical characterization and antioxidant properties of the wild edible acerola Malpighia umbellata Rose. J. Food. 2018;16:698-706. Available:https://doi.org/10.1080/19476337.2018.1475424

Abramovic H, Grobin B, Ulrih NP, Cigic B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin-Ciocalteu. J. Chem. 2018;4608405. Available:https://doi.org/10.1155/2018/4608405

Carneiro ABA, Pinto EJS, Ribeiro IF, Magalhães MRG, Neto MABM. Efeito da Astrocaryum aculeatum (Tucumã) na toxicidade da Doxorrubicina: Modelo experimental in vivo. Acta Paul. Enferm. 2017;30:233-239. Available:https://doi.org/10.1590/1982-0194201700036

Patro G, Bhattamisra SK, Mohanty BK, Sahoo HB. In vitro and In vivo antioxidant evaluation and estimation of total phenolic, flavonoidal content of Mimosa pudica L. Pharmacognosy Res. 2016;8:22-28. Available:https://doi.org/10.4103/0974-8490.171099

Kumar P, Baraiya S, Gaidhani SN, Gupta MD, Wanjari MM. Antidiabetic activity of stem bark of Bauhinia variegata in alloxan-induced hyperglicemic rats. J. Pharmacol. Pharmacother. 2012;3:64-66. Available:https://doi.org/10.4103/0976-500X.92518

Aremu OO, Oyedeji AO, Oyedeji OO, Nkeh-Chungag BN, Rusike CRS. In vitro and In vivo antioxidant properties of Taraxacum officinale in N-Nitro-L-Arginine Methyl Ester (L-NAME)-induced hypertensive rats. Antioxidants. 2019;8: 309. Available:https://doi.org/10.3390/antiox8080309

Perlmuter LC, Flanagan BP, Shah PH, Singh SP. Glycemic control and hypoglycemia. Diabetes Care. 2008;10: 2072-2076. Available:https://doi.org/10.2337/dc08-1441

Kim JH, Bae HY, Kim SY. Clinical marker of platelet hyperreactivity in diabetes mellitus. Diabetes Metab. J. 2013;37:423-428. Available:https://doi.org/10.4093/dmj.2013.37.6.423

Pagliuca FW, Melton DA. How to make a functional β-cell. Development. 2013;140: 2472-2483. Available:https://doi.org/10.1242/dev.093187

Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a type 3 Diabetes? A critical appraisal. BBA-Bioenergetics. 2017;1863:1078-1089. Available:https://doi.org/10.1016/j.bbadis.2016.08.018

Gonçalves AEDS, Lajolo FM, Genovese MI. Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. J. Agric. Food Chem. 2010; 58:4666-4674. Available:https://doi.org/10.1021/jf903875u

Fujita A, Sarkar D, Wu S, Kennely E, Shetty K, Genovese MI. Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia McVaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Res. Int. 2015;77:194-203. Available:https://doi.org/10.1016/j.foodres.2015.07.009

Yin Z, Zhang W, Feng F, Zhang Y, Kang W. -Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness. 2014;3:136-174.

Vinholes J, Lemos G, Barbieri RL, Franzon RC, Vizzotto M. In vitro assessement of the antihyperglycemic and antioxidant properties of araçá, butiá and pitanga. Food Biosci. 2017;19:92-100. Available:https://doi.org/10.1016/j.fbio.2017.06.005

Udani JK, Singh BB, Singh VJ, Barrett ML. Effects of Açai (Euterpe oleracea Mart) berry preparation on metabolic parameters in a healthy overweight population: A pilot study. Nutr. J. 2011;10:45. Available:https://doi.org/10.1186/1475-2891-10-45

Ebrahimpour-Koujan S, Gargari BP, Mobasseri M, Valizadeh H, Asghari-Jafarabadi M. Lower glycemic indices and lipid profile among type 2 diabetes mellitus patients who received novel dose of Silybum marianum (L.) Gaertn. (silymarin) extract supplement: A triple-blinded randomized controlled clinical trial. Phytomedicine. 2018;44:39-44. Available:https://doi.org/10.1016/j.phymed.2018.03.050

Huseini HF, Hasani-Rnjbar S, Nayebi N, Heshmat R, Sigarodi FK, Ahvazi M, Alaei BA, Kianbakht S. Capparis spinosa L. (Caper) fruit extract in treatment of type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Complement. Ther. Med. 2013;21:447-452. Available:https://doi.org/10.1016/j.ctim.2013.07.003

Shidfar F, Rajab A, Rahideh T, Khandouzi N, Hosseini S, Shidfar S. The effect of ginger (Zingiber officinale) on glycemic markers in patients with type 2 diabetes. J. Complement. Integr. Med. 2015;12:165-170. Available:https://doi.org/10.1515/jcim-2014-0021

Lazavi F, Mirmiran P, Sohrab G, Nikpayam O, Angoorani P, Hedayati M. The barberry juice effects on metabolic factors and oxidative stress in patients with type 2 diabetes: A randomized clinical trial. Complement. Ther. Clin. 2018;31:170-174. Available:https://doi.org/10.1016/j.ctcp.2018.01.009

Kumari S, Deori M, Elancheran R, Kotoky J, Devi R. In vitro and In vivo antioxidant, anti-hiperlipidemic properties and chemical characterization of Centella asiatica (L.) extract. Front. Pharmacol. 2016;7. Available:https://doi.org/10.3389/fphar.2016.00400

Vajda JE. Neuroprotection and neurodegenerative diseases. J. Clin. Neurosci. 2002;9:4-8. Available:https://doi.org/10.1054/jocn.20011027

Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: Properties, sources, targets, and their implications in various disease. Indian J. Clin. Biochem. 2015;30:11-26. Available:https://doi.org/10.1007/s12291-014-0446-0

Zoerle T, Carbonara M, Zanier ER, Ortolano F, Bertani G, Magnoni S, Stocchetti, N. Rethinking neuroprotection in severe traumatic brain injury: Toward bedside neuroprotection. Front. Neurol. 2017;8:354. Available:https://doi.org/10.3389/fneur.2017.00354

Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in oxidative stress-related neurodegenerative diseases: Role of endocannabinoid system modulation. Antioxid. Redox Signal. 2018;29:75-108. Available:https://doi.org/10.1089/ars.2017.7144

Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A. Neuroprotection by flavonoids. Braz. J. Med. Biol. Res. 2003;36:1613-1620. Available:http://dx.doi.org/10.1590/S0100-879X2003001200002

Lalkovicová M, Danielisová V. Neuroprotection and antioxidants. Neural Regen. Res. 2016;11:865-874. Available:https://doi.org/10.4103/1673-5374.184447

González-Fuentes J, Selva J, Moya C, Castro-Vázquez L, Lozano MV, Marcos P, Plaza-Oliver M, Rodríguez-Robledo V, Santander-Ortega MJ, Villaseca-González N, Arroyo-Jimenez MM. Neuroprotective natural molecules, from food to brain. Front. Neurosci. 2018;12:721. Available:https://doi.org/10.3389/fnins.2018.00721

Torma PCMR, Brasil AVS, Carvalho AV, Jablonski A, Rabelo TK, Moreira JCF, Gelain DP, Flôres SH, Augusti PR, Rios AO. Hydroethanolic extracts from different genotypes of açaí (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y). Food Chem. 2017;222:94-104. Available:https://doi.org/10.1016/j.foodchem.2016.12.006

Wong DYS, Musgrave IF, Harvey BS, Smid SD. Açaí (Euterpe oleraceae Mart.) berry extract exerts neuroprotective effects against -amyloid exposure in vitro. Neurosci. Lett. 2013;556:221-226. Available:https://doi.org/10.1016/j.neulet.2013.10.027

Castillo WO, Aristizabal-Pachon AF, Montaldi APL, Sakamoto-Hojo ET, Takahashi CS. Galanthamine decreases genotoxicity and cell death induced by -amyloid peptide in SH-SY5Y cell line. Neurotoxicology. 2016;57:291-297. Available:https://doi.org/10.1016/j.neuro.2016.10.013

Lee C, Park GH, Kim CY, Jang JH. [6]-Gingerol attenuates -amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem. Toxicol. 2011;49:1261-1269. Available:https://doi.org/10.1016/j.fct.2011.03.005

Souza-Monteiro JR, Hámoy M, Santana-Coelho D, Arrifano GPF, Paraense RSO, Costa-Malaquias A, Mendonça JR, Silva RF, Monteiro WSC, Rogez H, Oliveira DL, Nascimento JLM, Crespo-López ME. Anticonvulsant properties of Euterpe oleracea in mice. Neurochem. Int. 2015;90:20-27. Available:https://doi.org/10.1016/j.neuint.2015.06.014

Azevêdo JCS, Borges KC, Genovese MI, Correia RTP, Vattem DA. Neuroprotective effects of dried camu-camu (Myrciaria dubia HBK McVaugh) residue in C. elegans. Food Res. Int. 2015;73:135-141. Available:https://doi.org/10.1016/j.foodres.2015.02.015

Veasey RC, Haskell-Ramsay CF, Kennedy DO, Wishart K, Maggini S, Fuchs CJ, Stevenson EJ. The effects of supplementation with a vitamin and mineral complex with guarana prior to fasted exercise on affect, exertion, cognitive performance, and substrate metabolism: A randomized controlled trial. Nutrients. 2015;7:6109-6127. Available:https://doi.org/10.3390/nu7085272

Massoud F, Léger GC. Pharmacological treatment of Alzheimer disease. Can. J. Psychiatry. 2011;56:579-588. Available:https://doi.org/10.1177/070674371105601003

Connolly BS, Lang AE. Pharmacological treatment of Parkinson disease. A review. JAMA. 2014;311:1670-1683. Available:https://doi.org/10.1001/jama.2014.3654

Kahn F. The genus Astrocaryum (Arecaceae). Rev. Peru. Biol. 2008;15:31-48. Available:http://www.scielo.org.pe/pdf/rpb/v15s1/a04v15s1.pdf

Felisberto MHF, Costa MS, Boas FV, Leivas CL, Franco CML, Souza SM, Clerici MTPS, Cordeiro LMC. Characterization and technological properties of peach palm (Bactris gasipaes var. gasipaes) fruit starch. Food Res. Int.in press; 2020. Available:https://doi.org/10.1016/j.foodres.2020.109569

Tostes LCL, Lins ALFA, Santos AHO, Guimarães JRS, Ferreira AMSD, Dias MRL. Anatomical aspects and phytochemical potencial of Caryocar villosum (Aubl.) Pers. (pequiá). Braz. J. Dev. 2019;5:25807-25829. Available:https://doi.org/10.34117/bjdv5n11-235

Oliveira MSP, Schwartz G. Açaí – Euterpe oleracea. Exotic Fruits. 2018;1-5. Available:https://doi.org/10.1016/B978-0-12-803138-4.00002-2

Rabelo A. Araçá-Boi (Eugenia stipitata McVaugh). Frutos Nativos da Amazônia comercializados nas feiras de Manaus-AM. INPA, Manaus; 2012.

Oliveira AIT, Cabral JB, Mahmoud TS, Nascimento GNL, Silva JFM, Pimenta RS, Morais PB. In vitro antimicrobial activity and fatty acid composition through gas chromatography-mass spectrometry (GC-MS) of ethanol extracts of Mauritia flexuosa (Buriti) fruits. J. Med. Plants Res. 2017;11:635-641. Available:https://doi.org/10.5897/JMPR2017.6460

Aguiar JPL, Souza FCA. Camu-camu super fruit (Myrciaria dubia (H.B.K) Mc Vaugh) at different maturity stages. Afr. J. Agric. Res. 2016;11:2519-2523. Available:https://doi.org/10.5897/AJAR2016.11167

Martins M, Kluczkovski AM, Santos ACS, Fernandes OCC, Scussel VM. Evaluation of ochratoxin A and fungi in powdered guaraná (Paullinia cupana Kunth), a caffeine rich product from Amazon forest. Afr. J. Microbiol. Res. 2014;8:545-550. Available:https://doi.org/10.5897/AJMR2013.6579

Jimenez MM. Neuroprotective natural molecules, from food to brain. Front. Neurosci. 2018;12:721. Available:https://doi.org/10.3389/fnins.2018.00721

Martini MH, Lenci CG, Figueira A, Tavares DQ. Localization of the cotyledon reserves of Theobroma grandiflorum (Willd. ex Spreng.) K. Schum., T. subincanum Mart., T. bicolor Bonpl. and their analogies with T. cacao L. Rev. Bras. Bot. 2008;31:147-154. Available:https://doi.org/10.1590/S0100-84042008000100013

Quesada S, Azofeifa G, Jatunov S, Jiménez G, Navarro L, Gómez G. Carotenoids composition, antioxidant activity and glycemic index of two varieties of Bactris gasipaes. Emir. J. Food Agr. 2011;23:482-489. Available:http://ejfa.me/index.php/journal/article/view/1272

Sun CD, Zhang B, Zhang JK, Xu CJ, Wu YL, Li X, Chen KS. Cyanidin-3-glucoside-rich extract from Chinese bayberry fruit protects pancreatic  cells and ameliorates hyperglycemia in streptozotocin-induced diabetic mice. J. Med. Food. 2012;15:288-298. Available:https://doi.org/10.1089/jmf.2011.1806

Silva HR, Assis DC, Prada AL, Silva Junior JOC, Sousa MB, Ferreira AM, Amado JRR, Carvalho HO, Santos AVTLT, Carvalho JCT. Obtaining and characterization of anthocyanins from Euterpe oleracea (açaí) dry extract for nutraceutical and food preparations. Rev. Bras. Farmacogn, 2019; 29:677-685. Available:https://doi.org/10.1016/j.bjp.2019.03.004

Barbosa PO, Pala D, Silva CT, Souza MO, Amaral JF, Vieira RAL, Folly GAF, Volp ACP, Freitas RN. Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutr. 2016;32: 674-680. Available:https://doi.org/10.1016/j.nut.2015.12.030

Magalhães TAFM, Souza MOS, Gomes SVG, Silva RM, Martins FS, Freitas RN, Amaral JF. Acai (Euterpe oleracea Martius) promotes jejunal tissue regeneration by enhancing antioxidant response in 5-Fluoroacil-induced mucositis. Nutr. Cancer. 2020;5:1-11. Available:https://doi.org/10.1080/01635581.2020.1759659

Poulose SM, Bielinski DF, Carey A, Schauss AG, Shukitt-Hale B. Modulation of oxidative stress, inflammation, autophagy and expression of Nrf2 in hippocampus and frontal cortex of rats fed with açaí-enriched diets. Nutr. Neurosci. 2017;20: 305-315. Available:https://doi.org/10.1080/1028415X.2015.1125654

Nobre CB, Sousa EO, Camilo CJ, Machado JF, Silva JMFL, Filho JR, Coutinho HDM, Costa JGM. Antioxidative effect and phytochemical profile of natural products from the fruits of “babaçu” (Orbignia speciose) and “buriti” (Mauritia flexuosa). Food Chem. Toxicol. 2018;121: 423-429. Available:https://doi.org/10.1016/j.fct.2018.08.068

Scazzocchio B, Vari R, Filesi C, Del Gaudio I, D’Archivio M, Santangelo C, Iacovelli A, Galvano F, Pluchinotta FR, Giovanni C, Masella R. Protocatechuic acid activates key components of insulin signaling pathway mimicking insulin activity. Mol. Nutr. Food Res. 2015;59: 1472-1481. Available:https://doi.org/10.1002/mnfr.201400816

Romero ABR, Carvalho-Martins MC, Nunes PHM, Ferreira NRT, Brito AKS, Cunha PFM, Lima A, Assis RC, Araújo EM. In vitro and in vivo antioxidant activity of Buriti fruit (Mauritia flexuosa L.f.). Nutr. Hosp. 2015;32:2153-2161. Available:https://doi.org/10.3305/nh.2015.32.5.9603

Azevêdo JCS, Fujita A, Oliveira EL, Genovese MI, Correia RTP. Dried camu-camu (Myrciaria dubia H.B.K.Mc Vaugh) industrial residue: A bioactive-rich Amazonian powder with functional attributes. Food Res. Int. 2014:62:934-940. Available:https://doi.org/10.1016/J.FOODRES.2014.05.018

Silva FC, Arruda A, Ledel A, Dauth C, Romão NF, Viana RN, Ferraz ABF, Picada JN, Pereira P. Antigenotoxic effect of acute, subacute and chronic treatments with Amazonian camu-camu (Myrciaria dubia) juice on mice blood cells. Food Chem. Toxicol. 2012;50:2275-2281. Available:https://doi.org/10.1016/j.fct.2012.04.021

Fujita A, Borges K, Correia R, Franco BDGM, Genovese MI. Impact of spouted bed drying on bioactive compounds, antimicrobial and antioxidant activities of comercial frozen pulp of camu-camu (Myrciaria dubia Mc. Vaugh). Food Res. Int. 2013;54:495-500. Available:https://doi.org/10.1016/j.foodres.2013.07.025

Gonçalves ANSS, Lellis-Santos C, Curi R, Lajolo FM, Genovese MI. Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of type 1 diabetic rats. Food Res. Int. 2014;64:1-8. Available:https://doi.org/10.1016/j.foodres.2014.05.074

Yonekura L, Martins CA, Sampaio GR, Monteiro MP, Cesar LAM, Mioto BM, Mori CS, Mendes TMN, Ribeiro ML, Arçari DP, Torres EAFS. Bioavailability of catechins from guarana (Paullinia cupana) and its effect on antioxidant enzymes and other oxidative stress markers in healthy human subjects. Food Funct. 2016;7:2970-2978. Available:https://doi.org/10.1039/c6fo00513f

Portella RL, Barcelos RP, Rosa EJF, Ribeiros EE, Cruz IBM, Suleiman L, Soares FAA. Guarana (Paullinia cupana Kunth) effects on LDL oxidation in elderly people: An in vitro and in vivo study. Lipids Health Dis. 2013;12:1-9. Available:https://doi.org/10.1186/1476-511X-12-12

Maldaner DR, Pellenz NL, Barbisan F, Azzolin VF, Mastella MH, Teixeira CF, Duarte T, Maia-Ribeiro EA, Cruz IBM, Duarte MMMF. Interaction between low-level laser therapy and Guarana (Paullinia cupana) extract induces antioxidant, anti-inflammatory, and anti-apoptotic effects and promotes proliferation in dermal fibroblasts. J. Cosmet. Dermatol. 2020;19: 629-637. Available:https://doi.org/10.1111/jocd.13055

Krewer CC, Ribeiro EE, Ribeiro EAM, Moresco RN, Rocha MIUM, Montagner GFFS, Machado MM, Viegas K, Brito E, Cruz I. Habitual intake of Guaraná and metabolic morbidities: An epidemiological study of na elderly Amazonian population. Phytother. Res. 2011;25:1367-1374. Available:https://doi.org/10.1002/ptr.3437

Mascato DRLH, Monteiro JB, Passarinho MM, Galeno DML, Cruz RJ, Ortiz C, Morales L, Lima ES, Carvalho RP. Evaluation of antioxidant capacity of Solanum sessiliflorum (Cubiu) extract: An in vitro assay. Nut. Metab. 2015;364185. Available:https://doi.org/10.1155/2015/364185