A Comprehensive Review of Duchenne Muscular Dystrophy: Genetics, Clinical Presentation, Diagnosis, and Treatment

Kylie A. Limback

College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States of America.

William D. Jacobus

College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States of America.

Amber Wiggins-McDaniel

College of Biosciences, Kansas City University, Kansas City, MO, United States of America.

Ramon Newman

College of Osteopathic Medicine, Kansas City University, Kansas City, MO, United States of America.

Robert A. White *

College of Biosciences, Kansas City University, Kansas City, MO, United States of America.

*Author to whom correspondence should be addressed.


Abstract

Duchenne Muscular Dystrophy (DMD) is a genetic disorder involving progressive muscle deterioration leading to loss of mobility, cardiomyopathy, and respiratory complications leading to an early death by the fourth decade of life. Males are affected more often as DMD results from a mutation in the dystrophin gene residing on the X chromosome. The DMD genetic mutation results in a complete functional lack of dystrophin, which culminates as an inadequate connection between the intracellular actin filaments and the extracellular skeleton of muscle. Boys affected by DMD clinically present with muscle weakness before age five, are often wheelchair-bound by age 12, and rarely survive beyond the third decade of life.

Traditional treatment strategies have focused primarily on quality-of-life improvement and have included the use of glucocorticoids and physical therapy. No cure currently exists, however many novel treatments for DMD are currently being explored. Some of these involve gene therapy, exon skipping, stop codon skipping, CRISPR technology interventions, and the use of a retinal dystrophin isoform. In this comprehensive review, we recapitulate the literature findings to summarize the history, epidemiology, genetics, clinical presentation, diagnosis, and current and future strategies for the treatment of Duchenne Muscular Dystrophy.

Keywords: Duchenne muscular dystrophy, dystrophin, retinal dystrophin, antisense oligonucleotide, treatments, diagnosis, symptoms, genetics


How to Cite

Limback, K. A., Jacobus, W. D., Wiggins-McDaniel, A., Newman, R., & White, R. A. (2022). A Comprehensive Review of Duchenne Muscular Dystrophy: Genetics, Clinical Presentation, Diagnosis, and Treatment. Biotechnology Journal International, 26(6), 1–31. https://doi.org/10.9734/bji/2022/v26i6662

Downloads

Download data is not yet available.

References

Hoffman EP, Fischbeck KH, Brown RH, Johnson M, Medori R, Loire JD, et al. Characterization of dystrophin in muscle-biopsy specimens from patients with duchenne’s or becker’s muscular dystrophy. N Engl J Med. 1988;318(21):1363–8.

DOI:10.1056/NEJM198805263182104. Available:http://www.nejm.org/doi/abs/10.1056/NEJM198805263182104.

Emery AEH. The muscular dystrophies. Lancet. 2002;359(9307):687–95.

DOI:10.1016/S0140-6736(02)07815-7. http://www.thelancet.com/article/S0140673602078157/fulltext.

Mendell JR, Campbell K, Rodino-Klapac L, Sahenk Z, Shilling C, Lewis S, et al. Dystrophin immunity in duchenne’s muscular dystrophy. N Engl J Med. 2010;363(15):1429–37.

DOI:10.1056/NEJMoa1000228

Available:http://www.nejm.org/doi/abs/10.1056/NEJMoa1000228.

Monaco AP, Kunkel LM. A giant locus for the Duchenne and Becker muscular dystrophy gene. Trends Genet. 1987;3:33–7.

DOI:https://doi.org/10.1016/0168-9525(87)90163-6. Available:http://www.sciencedirect.com/science/article/pii/0168952587901636.

Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988;53(2):219–28.

DOI:10.1016/0092-8674(88)90383-2.

Uchino M, Araki S, Miike T, Teramoto H, Nakamura T, Yasutake T. Localization and characterization of dystrophin in muscle biopsy specimens from Duchenne muscular dystrophy and various neuromuscular disorders. Muscle Nerve. 1989;12(12):1009–16.

DOI:10.1002/mus.880121209.

Roberts RG, Coffey AJ, Bobrow M, Bentley DR. Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics. 1992;13(4): 942–50.

DOI:10.1016/0888-7543(92)90005-d.

den Dunnen JT, Bakker E, Breteler EG, Pearson PL, van Ommen GJ. Direct detection of more than 50% of the Duchenne muscular dystrophy mutations by field inversion gels. Nature. 1987; 329(6140):640–2.

DOI:10.1038/329640a0.

Lee T, Takeshima Y, Kusunoki N, Awano H, Yagi M, Matsuo M, et al. Differences in carrier frequency between mothers of Duchenne and Becker muscular dystrophy patients. J Hum Genet. 2014;59(1):46–50.

DOI:10.1038/jhg.2013.119

Becker PE, Kiener F. Eine neue x-chromosomale Muskeldystrophie. Arch für Psychiatr und Nervenkrankheiten Ver mit Zeitschrift für die Gesamte Neurol und Psychiatr. 1955;193(4):427–48.

DOI:10.1007/BF00343141

Available:https://pubmed.ncbi.nlm.nih.gov/13249581/.

Mah JK, Korngut L, Dykeman J, Day L, Pringsheim T, Jette N. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul Disord. 2014;24(6):482–91.

DOI:10.1016/j.nmd.2014.03.008

Available:https://pubmed.ncbi.nlm.nih.gov/24780148/.

Crisafulli S, Sultana J, Fontana A, Salvo F, Messina S, Trifirò G. Global epidemiology of Duchenne muscular dystrophy: an updated systematic review and meta-analysis. Orphanet J Rare Dis. 2020;15(1):141.

DOI:10.1186/s13023-020-01430-8.

Kariyawasam D, D’Silva A, Mowat D, Russell J, Sampaio H, Jones K, et al. Incidence of Duchenne muscular dystrophy in the modern era; an Australian study. Eur J Hum Genet. 2022; 30(12):1398–404.

DOI:10.1038/s41431-022-01138-2.

Salzberg DC, Mann JR, McDermott S. Differences in race and ethnicity in muscular dystrophy mortality rates for males under 40 years of age, 2006-2015. Neuroepidemiology. 2018;50(3–4):201–6.

DOI:10.1159/000488244.

Available:https://pubmed.ncbi.nlm.nih.gov/29698937/.

Kornberg A, Yiu E. Duchenne muscular dystrophy. Neurol India. 2008;56(3): 236.

DOI:10.4103/0028-3886.43441.

Available:http://www.neurologyindia.com/text.asp?2008/56/3/236/43441.

Zubrzycka-Gaarn EE, Bulman DE, Karpati G, Burghes AHM, Belfall B, Klamut HJ, et al. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature. 1988;333(6172):466–9.

DOI:10.1038/333466a0

Available:https://pubmed.ncbi.nlm.nih.gov/3287171/.

Gao QQ, McNally EM. The dystrophin complex: structure, function, and implications for therapy. In: Comprehensive Physiology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2015 [cited 2020 Nov 5]:1223–39

DOI:10.1002/cphy.c140048.

Available:http://doi.wiley.com/10.1002/cphy.c140048.

Ahn AH, Kunkel LM. The structural and functional diversity of dystrophin [homepage on the Internet]. Vol. 3, Nature Genetics. 1993 [cited 2020 Jul 24];283– 91.

DOI:10.1038/ng0493-283

Available:http://www.nature.com/articles/ng0493-283.

Henderson DM, Lin AY, Thomas DD, Ervasti JM. The carboxy-terminal third of dystrophin enhances actin binding activity. J Mol Biol. 2012;416(3):414–24.

DOI:10.1016/j.jmb.2011.12.040. Available:https://linkinghub.elsevier.com/retrieve/pii/S0022283611013696.

Levine BA, Moir AJG, Patchell VB, Perry S V. The interaction of actin with dystrophin. FEBS Lett. 1990;263(1):159–62.

DOI:10.1016/0014-5793(90)80728-2

Available:http://doi.wiley.com/10.1016/0014-5793%2890%2980728-2.

Way M, Pope B, Cross RA, Kendrick-Jones J, Weeds AG. Expression of the N-terminal domain of dystrophin in E. coli and demonstration of binding to F-actin. FEBS Lett. 1992;301(3):243–5.

DOI:10.1016/0014-5793(92)80249-G.

Available:http://doi.wiley.com/10.1016/0014-5793%2892%2980249-G.

Amann KJ, Renley BA, Ervasti JM. A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem. 1998;273(43):28419–23. DOI:10.1074/jbc.273.43.28419.

Available:http://www.jbc.org/lookup/doi/10.1074/jbc.273.43.28419.

Suzuki A, Yoshida M, Ozawa E. Mammalian α1- and β1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus. J Cell Biol. 1995;128(3):373–81. DOI:10.1083/jcb.128.3.373.

Available:https://rupress.org/jcb/article-pdf/128/3/373/386689/373.pdf.

Ahn AH, Kunkel LM. Syntrophin binds to an alternatively spliced exon of dystrophin. J Cell Biol. 1995;128(3):363–71.

DOI:10.1083/jcb.128.3.363

Available:http://rupress.org/jcb/article-pdf/128/3/363/386730/363.pdf.

Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66(6):1121–31.

DOI:10.1016/0092-8674(91)90035-W

Available:http://www.cell.com/article/009286749190035W/fulltext.

Durbeej M, Campbell KP. Muscular dystrophies involving the dystrophin-glycoprotein complex: An overview of current mouse models., Current Opinion in Genetics and Development. Elsevier Ltd. 2002;12:349–61.

DOI:10.1016/S0959-437X(02)00309-X.

Yang B, Jung D, Rafael JA, Chamberlain JS, Campbell KP. Identification of α-syntrophin binding to syntrophin triplet, dystrophin, and utrophin. J Biol Chem. 1995;270(10):4975–8. DOI:10.1074/jbc.270.10.4975.

Available:http://www.jbc.org/content/270/10/4975.full.

Chang WJ, Iannaccone ST, Lau KS, Masters BSS, Mccabe TJ, Mcmillan K, et al. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. Proc Natl Acad Sci U S A. 1996;93(17):9142–7.

DOI:10.1073/pnas.93.17.9142.

Available:https://www.pnas.org/content/93/17/9142.

Kobayashi YM, Rader EP, Crawford RW, Iyengar NK, Thedens DR, Faulkner JA, et al. Sarcolemma-localized nNOS is required to maintain activity after mild exercise. Nature. 2008;456(7221):511–5.

DOI:10.1038/nature07414.

Available:https://www.nature.com/articles/nature07414.

Doorenweerd N, Mahfouz A, Van Putten M, Kaliyaperumal R, T’Hoen PAC, Hendriksen JGM, et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci Rep. 2017;7(1)

DOI:10.1038/s41598-017-12981-5.

Available:https://pubmed.ncbi.nlm.nih.gov/28974727/.

Matsuo M, Awano H, Matsumoto M, Nagai M, Kawaguchi T, Zhang Z, et al. Dystrophin Dp116: A yet to be investigated product of the duchenne muscular dystrophy gene. Genes (Basel). 2017;8(10).

DOI:10.3390/genes8100251.

Culligan KG, Mackey AJ, Finn DM, Maguire PB, Ohlendieck K. Role of dystrophin isoforms and associated proteins in muscular dystrophy (review). Int J Mol Med. 1998;2(6):639–48. DOI:10.3892/ijmm.2.6.639.

Aragón J, González-Reyes M, Romo-Yáñez J, Vacca O, Aguilar-González G, Rendón A, et al. Dystrophin Dp71 isoforms are differentially expressed in the mouse brain and retina: Report of new alternative splicing and a novel nomenclature for Dp71 isoforms. Mol Neurobiol. 2018;55(2):1376–86.

DOI:10.1007/s12035-017-0405-x.

Austin RC, Morris GE, Howard PL, Klamut HJ, Ray PN. Expression and synthesis of alternatively spliced variants of Dp71 in adult human brain. Neuromuscul Disord. 2000;10(3):187–93.

DOI:10.1016/s0960-8966(99)00105-4.

Tozawa T, Itoh K, Yaoi T, Tando S, Umekage M, Dai H, et al. The shortest isoform of dystrophin (Dp40) interacts with a group of presynaptic proteins to form a presumptive novel complex in the mouse brain. Mol Neurobiol. 2012;45(2):287– 97.

DOI:10.1007/s12035-012-8233-5.

Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989;338(6212):259–62.

DOI:10.1038/338259a0

Available:https://www.nature.com/articles/338259a0.

Petrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci U S A. 1993;90(8):3710–4.

DOI:10.1073/pnas.90.8.3710

Available:https://www.pnas.org/content/90/8/3710.

Pasternak C, Wong S, Elson EL. Mechanical function of dystrophin in muscle cells. J Cell Biol. 1995;128(3):355–61.

DOI:10.1083/jcb.128.3.355

Available:http://rupress.org/jcb/article-pdf/128/3/355/386675/355.pdf.

Johnstone VPA, Viola HM, Hool LC. Dystrophic cardiomyopathy—potential role of calcium in pathogenesis, treatment and novel therapies [homepage on the Internet]. Vol. 8, Genes. MDPI AG; 2017 [cited 2020 Nov 7].

DOI:10.3390/genes8040108

Available:https://pubmed.ncbi.nlm.nih.gov/28338606/.

Bonilla E, Samitt CE, Miranda AF, Hays AP, Salviati G, DiMauro S, et al. Duchenne muscular dystrophy: Deficiency of dystrophin at the muscle cell surface. Cell. 1988;54(4):447–52.

DOI:10.1016/0092-8674(88)90065-7

Available:http://www.cell.com/article/0092867488900657/fulltext.

Beggs AH, Hoffman EP, Snyder JR, Arahata K, Specht L, Shapiro F, et al. Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies. Am J Hum Genet. 1991;49(1):54–67.

Available:/pmc/articles/PMC1683222/?report=abstract.

Liechti-Gallati S, Koenig M, Kunkel LM, Frey D, Boltshauser E, Schneider V, et al. Molecular deletion patterns in Duchenne and Becker type muscular dystrophy. Hum Genet. 1989;81(4):343–8.

DOI:10.1007/BF00283688

Available:https://pubmed.ncbi.nlm.nih.gov/2784778/

Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD global database: Analysis of more than 7,000 duchenne muscular dystrophy mutations. Hum Mutat. 2015;36(4):395–402.

DOI:10.1002/humu.22758

Available:https://onlinelibrary.wiley.com/doi/full/10.1002/humu.22758.

Baumbach LL, Chamberlain JS, Ward PA, Farwell NJ, Caskey CT. Molecular and clinical correlations of deletions leading to duchenne and becker muscular dystrophies. Neurology. 1989;39(4):465–74.

DOI:10.1212/wnl.39.4.465

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/2927671/.

Ferlini A, Neri M. Molecular Genetics of Dystrophinopathies. In: eLS. Chichester, UK: John Wiley & Sons, Ltd; 2014 [cited 2020 Nov 7].

DOI:10.1002/9780470015902.a0025342. http://doi.wiley.com/10.1002/9780470015902.a0025342.

Monaco AP, Bertelson CJ, Liechti- Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2(1): 90–5.

DOI:10.1016/0888-7543(88)90113-9

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/3384440/.

Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, et al. The molecular basis for duchenne versus becker muscular dystrophy: Correlation of severity with type of deletion. Am J Hum Genet. 1989;45(4):498–506.

DOI:10.1016/1./pmc/articles/PMC1683519/?report=abstract.

Tuffery-Giraud S, Béroud C, Leturcq F, Yaou R Ben, Hamroun D, Michel-Calemard L, et al. Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: A model of nationwide knowledgebase. Hum Mutat. 2009;30(6):934–45. DOI:10.1002/humu.20976

Available:https://pubmed.ncbi.nlm.nih.gov/19367636/.

Soltanzadeh P, Friez MJ, Dunn D, von Niederhausern A, Gurvich OL, Swoboda KJ, et al. Clinical and genetic characterization of manifesting carriers of DMD mutations. Neuromuscul Disord. 2010;20(8):499–504.

DOI:10.1016/j.nmd.2010.05.010

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/20630757/.

Chelly J, Marlhens F, Le Marec B, Jeanpierre M, Lambert M, Hamard G, et al. De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy. Hum Genet. 1986;74(2):193–6.

DOI:10.1007/BF00282093

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/2876949/.

Quan F, Janas J, Toth-Fejel S, Johnson DB, Wolford JK, Popovich BW. Uniparental disomy of the entire X chromosome in a female with Duchenne muscular dystrophy. Am J Hum Genet. 1997;60(1): 160–5.

Hoogerwaard EM, Bakker E, Ippel PF, Oosterwijk JC, Majoor-Krakauer DF, Leschot NJ, et al. Signs and symptoms of Duchenne muscular dystrophy and Becker muscular dystrophy among carriers in the Netherlands: A cohort study. Lancet. 1999;353(9170):2116–9. DOI:10.1016/S0140-6736(98)10028-4.

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/10382696/.

Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature. 1986;323(6089): 646–50.

DOI:10.1038/323646a0.

Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management [homepage on the Internet]. The Lancet Neurology. Lancet Publishing Group; 2018 [cited 2020 Jul 16];17:251–67.

DOI:10.1016/S1474-4422(18)30024-3. /pmc/articles/PMC5869704/?report=abstract.

Emery AEH, Muntoni F, Quinlivan RCM. Duchenne muscular dystrophy. Oxford University Press; 2015.

Olshen R, Cooper L, Wyatt M, Leach J, Mubarak S, Schultz P. The Pathomechanics of Gait in Duchenne Muscular Dystrophy. Dev Med Child Neurol. 1981;23(1):3–22.

DOI:10.1111/j.1469-8749.1981.tb08442.x

Available:http://doi.wiley.com/10.1111/j.1469-8749.1981.tb08442.x.

Pradhan S, Mittal B. Infraspinatus muscle hypertrophy and wasting of axillary folds as the important signs in Duchenne muscular dystrophy. Clin Neurol Neurosurg. 1995;97(2):134–8. DOI:10.1016/0303-8467(95)00013-A.

Engel-Hoek L Van Den, Van Alfen N, De Swart BJM, De Groot IJM, Pillen S. Quantitative ultrasound of the tongue and submental muscles in children and young adults. Muscle Nerve. 2012;46(1):31–7.

DOI:10.1002/mus.23277.

Available:http://doi.wiley.com/10.1002/mus.23277.

Darras BT, Jones HR, Ryan MM, De Vivo DC. Neuromuscular disorders of infancy, childhood, and adolescence: a clinician’s approach: second edition. neuromuscular disorders of infancy, childhood, and adolescence: A clinician’s approach: Second Edition. Elsevier Inc.; 2014. DOI:10.1016/C2013-0-00077-1.

Suresh S, Wales P, Dakin C, Harris M-A, Cooper D (Gus) M. Sleep-related breathing disorder in Duchenne muscular dystrophy: Disease spectrum in the paediatric population. J Paediatr Child Health. 2005;41(9–10):500–3.

DOI:10.1111/j.1440-1754.2005.00691.x.

Available:http://doi.wiley.com/10.1111/j.1440-1754.2005.00691.x.

Dorman C, Hurley AD, Avignon JD. Language and learning disorders of older boys with duchenne muscular dystrophy. Dev Med Child Neurol. 2008;30(3):316–27.

DOI:10.1111/j.1469-8749.1988.tb14556.x

Available:http://doi.wiley.com/10.1111/j.1469-8749.1988.tb14556.x.

Banihani R, Smile S, Yoon G, Dupuis A, Mosleh M, Snider A, et al. Cognitive and Neurobehavioral Profile in Boys With Duchenne Muscular Dystrophy. J Child Neurol. 2015;30(11):1472–82.

DOI:10.1177/0883073815570154 Available:http://journals.sagepub.com/doi/10.1177/0883073815570154.

Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003;2(12):731–40.

DOI:10.1016/s1474-4422(03)00585-4.

Leibowitz D, Dubowitz V. Intellect and behaviour in duchenne muscular dystrophy. Dev Med Child Neurol. 2008;23(6):577–90.

DOI:10.1111/j.1469-8749.1981.tb02039.x

Available:http://doi.wiley.com/10.1111/j.1469-8749.1981.tb02039.x.

Wu JY, Kuban KCK, Allred E, Shapiro F, Darras BT. Association of duchenne muscular dystrophy with autism spectrum disorder. J Child Neurol. 2005;20(10):790–5. DOI:10.1177/08830738050200100201. Available:http://journals.sagepub.com/doi/10.1177/08830738050200100201.

Hendriksen JGM, Vles JSH. Neuropsychiatric disorders in males with duchenne muscular dystrophy: frequency rate of attention-deficit hyperactivity disorder (adhd), autism spectrum disorder, and obsessive—compulsive disorder. J Child Neurol. 2008;23(5):477–

DOI:10.1177/0883073807309775. Available:http://journals.sagepub.com/doi/10.1177/0883073807309775.

Annexstad EJ, Lund-Petersen I, Rasmussen M. Duchenne muscular dystrophy. Tidsskr Nor Laegeforen. 2014;134(14):1361–4.

DOI:10.4045/tidsskr.13.0836.

Smith AD, Koreska J, Moseley CF. Progression of scoliosis in Duchenne muscular dystrophy. J Bone Joint Surg Am. 1989;71(7):1066–74.

Larson CM, Henderson RC. Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop. 2000;20(1):71–4.

Okinaka S, Kumagai H, Ebashi S, Sugita H, Momoi H, Toyokura Y, et al. Serum Creatine Phosphokinase: Activity in Progressive Muscular Dystrophy and Neuromuscular Diseases. Arch Neurol. 1961;4(5):520–5.

DOI:10.1001/archneur.1961.00450110050006. Available:https://jamanetwork.com/journals/jamaneurology/fullarticle/563253.

McMillan HJ, Gregas M, Darras BT, Kang PB. Serum transaminase levels in boys with Duchenne and Becker muscular dystrophy. Pediatrics. 2011;127(1):e132– 6.

DOI:10.1542/peds.2010-0929.

Available:https://pediatrics.aappublications.org/content/127/1/e132.

Chenard AA, Becane HM, Tertrain F, de Kermadec JM, Weiss YA. Ventricular arrhythmia in Duchenne muscular dystrophy: Prevalence, significance and prognosis. Neuromuscul Disord. 1993;3(3):201–6.

DOI:10.1016/0960-8966(93)90060-W.

Yanagisawa A, Miyagawa M, Yotsukura M, Tsuya T, Shirato C, Ishihara T, et al. The prevalence and prognostic significance of arrhythmias in Duchenne type muscular dystrophy. Am Heart J. 1992;124(5):1244–50.

DOI:10.1016/0002-8703(92)90407-M.

Nigro G, Comi LI, Politano L, Bain RJI. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol. 1990;26(3):271–7.

DOI:10.1016/0167-5273(90)90082-G.

Passamano L, Taglia A, Palladino A, Viggiano E, D’Ambrosio P, Scutifero M, et al. Improvement of survival in duchenne muscular dystrophy: Retrospective analysis of 835 patients [homepage on the Internet]. Acta Myologica. Pacini Editore. 2012 [cited 2020 Jul 17];31:121–5.

Available:/pmc/articles/PMC3476854/?report=abstract.

Beck J, Weinberg J, Hamnegård CH, Spahija J, Olofson J, Grimby G, et al. Diaphragmatic function in advanced Duchenne muscular dystrophy. Neuromuscul Disord. 2006;16(3):161–7. DOI:10.1016/j.nmd.2006.01.003.

Phillips MF, Quinlivan RCM, Edwards RHT, Calverley PMA. Changes in spirometry over time as a prognostic marker in patients with duchenne muscular dystrophy. Am J Respir Crit Care Med. 2002;164(12):2191–4.

DOI:10.1164/ajrccm.164.12.2103052.

Available:https://pubmed.ncbi.nlm.nih.gov/11751186/.

Van Den Engel-Hoek L, Erasmus CE, Hendriks JCM, Geurts ACH, Klein WM, Pillen S, et al. Oral muscles are progressively affected in Duchenne muscular dystrophy: Implications for dysphagia treatment. J Neurol. 2013;260(5):1295–303.

DOI:10.1007/s00415-012-6793-y

Available:https://link.springer.com/article/10.1007/s00415-012-6793-y.

Ioannou P, Christopoulos G, Panayides K, Kleanthous M, Middleton L. Detection of Duchenne and Becker muscular dystrophy carriers by quantitative multiplex polymerase chain reaction analysis. Neurology. 1992;42(9):1783–90.

DOI:10.1212/wnl.42.9.1783

Available:https://n.neurology.org/content/42/9/1783.

Okubo M, Minami N, Goto K, Goto Y, Noguchi S, Mitsuhashi S, et al. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: Validation analysis of DMD mutations. J Hum Genet. 2016;61(6):483–9.

DOI:10.1038/jhg.2016.7

Available:www.nature.com/jhg.

Nevin J, Nevin NC, Dornan JC, Sim D, Armstrong MJ. Early amniocentesis: Experience of 222 consecutive patients, 1987–1988. Prenat Diagn. 1990;10(2):79–83.

DOI:10.1002/pd.1970100203

Available:http://doi.wiley.com/10.1002/pd.1970100203.

Ta MH, Tran TH, Do NH, Pham LAT, Bui TH, Ta VT, et al. Rapid method for targeted prenatal diagnosis of Duchenne muscular dystrophy in Vietnam. Taiwan J Obstet Gynecol. 2013;52(4):534–9.

DOI:10.1016/j.tjog.2013.10.014.

Parks M, Court S, Cleary S, Clokie S, Hewitt J, Williams D, et al. Non-invasive prenatal diagnosis of Duchenne and Becker muscular dystrophies by relative haplotype dosage. Prenat Diagn. 2016;36(4):312–20.

DOI:10.1002/pd.4781.

Lee SH, Kwak IP, Cha KEY, Park SE, Kim NK, Cha KEY, et al. Preimplantation diagnosis of non-deletion Duchenne muscular dystrophy (DMD) by linkage polymerase chain reaction analysis. J Med Genet. 1998;4(11):903–9.

DOI:10.1136/jmg.30.11.903.

Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71(3):304–13.

DOI:10.1002/ana.23528.

Tuffery-Giraud S, Saquet C, Chambert S, Echenne B, Marie Cuisset J, Rivier F, et al. The role of muscle biopsy in analysis of the dystrophin gene in Duchenne muscular dystrophy: experience of a national referral centre. Neuromuscul Disord. 2004;14(10):650–8.

DOI:10.1016/j.nmd.2004.05.002.

Muntoni F. Is a muscle biopsy in Duchenne dystrophy really necessary? [homepage on the Internet]. Neurology. Lippincott Williams and Wilkins; 2001 [cited 2020 Nov 7];57:574–5 DOI:10.1212/WNL.57.4.574.

Available:https://n.neurology.org/content/57/4/574.

Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management [homepage on the Internet]. The Lancet Neurology. Elsevier; 2010 [cited 2020 Nov 5];9:77–93.

DOI:10.1016/S1474-4422(09)70271-6.

Voit T, Stuettgen P, Cremer M, Goebel H. Dystrophin as a Diagnostic Marker in Duchenne and Becker Muscular Dystrophy. Correlation of Immunofluorescence and Western Blot. Neuropediatrics. 1991;22(03):152–62.

DOI:10.1055/s-2008-1071434

Available:http://www.thieme-connect.de/DOI/DOI?10.1055/s-2008-1071434.

Clarke A, Johnson M, Harris JB. Improved diagnosis of becker muscular dystrophy by dystrophin testing. Neurology. 1989;39(8):1011–7.

DOI:10.1212/wnl.39.8.1011

Available:https://n.neurology.org/content/39/8/1011.

Finanger EL, Russman B, Forbes SC, Rooney WD, Walter GA, Vandenborne K. Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Phys Med Rehabil Clin N Am. 2012;23(1):1–10, ix.

DOI:10.1016/j.pmr.2011.11.004.

Shklyar I, Geisbush TR, Mijialovic AS, Pasternak A, Darras BT, Wu JS, et al. Quantitative muscle ultrasound in Duchenne muscular dystrophy: a comparison of techniques. Muscle Nerve. 2015;51(2):207–13.

DOI:10.1002/mus.24296.

Takeshima Y, Yagi M, Okizuka Y, Awano H, Zhang Z, Yamauchi Y, et al. Mutation spectrum of the dystrophin gene in 442 Duchenne/Becker muscular dystrophy cases from one Japanese referral center. J Hum Genet. 2010;55(6): 379–88.

DOI:10.1038/jhg.2010.49

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/20485447/.

Falzarano M, Scotton C, Passarelli C, Ferlini A. Duchenne muscular dystrophy: From diagnosis to therapy. Molecules. 2015;20(10):18168–84.

DOI:10.3390/molecules201018168.

Available:http://www.mdpi.com/1420-3049/20/10/18168.

den Dunnen JT, Beggs AH. Multiplex PCR for identifying DMD gene deletions. Curr Protoc Hum Genet. 2006;Chapter 9:Unit 9.3.

DOI:10.1002/0471142905.hg0903s49.

Hegde MR, Chin ELH, Mulle JG, Okou DT, Warren ST, Zwick ME. Microarray-based mutation detection in the dystrophin gene. Hum Mutat. 2008;29(9):1091–9. DOI:10.1002/humu.20831. http://doi.wiley.com/10.1002/humu.20831.

Gatta V, Scarciolla O, Gaspari AR, Palka C, De Angelis MV, Di Muzio A, et al. Identification of deletions and duplications of the DMD gene in affected males and carrier females by multiple ligation probe amplification (MLPA). Hum Genet. 2005;117(1):92–8.

DOI:10.1007/s00439-005-1270-7

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/15841391/

Bovolenta M, Neri M, Fini S, Fabris M, Trabanelli C, Venturoli A, et al. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in dystrophinopathies. BMC Genomics. 2008;9(1):572.

DOI:10.1186/1471-2164-9-572

Available:http://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-9- 572.

Wang Y, Yang Y, Liu J, Chen XC, Liu X, Wang CZ, et al. Whole dystrophin gene analysis by next-generation sequencing: a comprehensive genetic diagnosis of Duchenne and Becker muscular dystrophy. Mol Genet Genomics. 2014;289(5):1013–21.

DOI:10.1007/s00438-014-0847-z

Available:https://link.springer.com/article/10.1007/s00438-014-0847-z.

Wang D, Gao M, Zhang K, Jin R, Lv Y, Liu Y, et al. Molecular genetics analysis of 70 chinese families with muscular dystrophy using multiplex ligation-dependent probe amplification and next-generation sequencing. Front Pharmacol. 2019;10:814.

DOI:10.3389/fphar.2019.00814. Available:https://www.frontiersin.org/article/10.3389/fphar.2019.00814/full.

Xiao Y, Jiang X, Wang R. Screening for DMD/BMD Deletion Carriers by Fluorescence In Situ Hybridization. Genet Test. 2003;7(3):195–201.

DOI:10.1089/109065703322537205. Available:

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/14641995/.

Pastore L, Caporaso MG, Frisso G, Orsini A, Santoro L, Sacchetti L, et al. A quantitative polymerase chain reaction (PCR) assay completely discriminates between Duchenne and Becker muscular dystrophy deletion carriers and normal females. Mol Cell Probes. 1996;10(2):129–37.

DOI:10.1006/mcpr.1996.0018.

Jang W, Kim Y, Han E, Park J, Chae H, Kwon A, et al. Chromosomal microarray analysis as a first-tier clinical diagnostic test in patients with developmental delay/intellectual disability, autism spectrum disorders, and multiple congenital anomalies: A prospective multicenter study in korea. Ann Lab Med. 2019;39(3):299–310.

DOI:10.3343/alm.2019.39.3.299

Available:www.annlabmed.orghttps://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_square.svg.

Bennett RR, den Dunnen J, O’Brien KF, Darras BT, Kunkel LM. Detection of mutations in the dystrophin gene via automated DHPLC screening and direct sequencing. BMC Genet. 2001;2(1):1– 12.

DOI:10.1186/1471-2156-2-17.

Available:https://link.springer.com/articles/10.1186/1471-2156-2-17.

Torella A, Trimarco A, Blanco FDV, Cuomo A, Aurino S, Piluso G, et al. One hundred twenty-one dystrophin point mutations detected from stored DNA samples by combinatorial denaturing high-performance liquid chromatography. J Mol Diagnostics. 2010;12(1):65–73. DOI:10.2353/jmoldx.2010.090074. /pmc/articles/PMC2797720/?report=abstract.

Uttley L, Carlton J, Woods HB, Brazier J. A review of quality of life themes in Duchenne muscular dystrophy for patients and carers [homepage on the Internet]. Health and Quality of Life Outcomes. BioMed Central Ltd. 2018 [cited 2020 Nov 5];16.

DOI:10.1186/s12955-018-1062-0.

Available:https://pubmed.ncbi.nlm.nih.gov/30567556/.

Manzur AY, Kuntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane database Syst Rev. 2008;(1):CD003725.

DOI:10.1002/14651858.CD003725.pub3.

Biggar WD, Skalsky A, McDonald CM. Comparing deflazacort and prednisone in duchenne muscular dystrophy. J Neuromuscul Dis. 2022;9:463–76.

DOI:10.3233/JND-210776.

Finder JD, Birnkrant D, Carl J, Farber HJ, Gozal D, Iannaccone ST, et al. Respiratory care of the patient with duchenne muscular dystrophy: ATS consensus statement. In: American Journal of Respiratory and Critical Care Medicine. American Thoracic Society; 2004 [cited 2020 Nov 5]:456–65

DOI:10.1164/rccm.200307-885ST.

Available:http://www.atsjournals.org/doi/abs/10.1164/rccm.200307-885ST.

Simonds AK, Muntoni F, Heather S, Fielding S. Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. Thorax. 1998;53(11):949–52.

DOI:10.1136/thx.53.11.949.

Klitzner TS, Beekman RH, Galioto FM, Jones TK, Manning PB, Morrow WR, et al. Cardiovascular health supervision for individuals affected by duchenne or becker muscular dystrophy. Pediatrics. 2005;116(6):1569–73.

DOI:10.1542/peds.2005-2448

Available:www.aappublications.org/news.

Manzur AY, Hyde SA, Rodillo E, Heckmatt JZ, Bentley G, Dubowitz V. A randomized controlled trial of early surgery in Duchenne muscular dystrophy. Neuromuscul Disord. 1992;2(5–6):379– 87.

DOI:10.1016/s0960-8966(06)80009-x.

Cheuk DKL, Wong V, Wraige E, Baxter P, Cole A. Surgery for scoliosis in Duchenne muscular dystrophy. Cochrane database Syst Rev. 2015;2015(10):CD005375.

DOI:10.1002/14651858.CD005375.pub4.

Kennedy JD, Staples AJ, Brook PD, Parsons DW, Sutherland AD, Martin AJ, et al. Effect of spinal surgery on lung function in Duchenne muscular dystrophy. Thorax. 1995;50(11):1173–8. DOI:10.1136/thx.50.11.1173.

Hammer S, Toussaint M, Vollsæter M, Nesbjørg Tvedt M, Drange Røksund O, Reychler G, et al. Exercise training in duchenne muscular dystrophy: A systematic review and meta-analysis. J Rehabil Med. 2022;54:jrm00250.

DOI:10.2340/jrm.v53.985.

Bulut N, Karaduman A, Alemdaroğlu-Gürbüz İ, Yılmaz Ö, Topaloğlu H, Özçakar L. The effect of aerobic training on motor function and muscle architecture in children with Duchenne muscular dystrophy: A randomized controlled study. Clin Rehabil. 2022;36(8):1062–71.

DOI:10.1177/02692155221095491.

Available:https://doi.org/10.1177/02692155221095491.

Lue YJ, Chen SS, Lu YM. Quality of life of patients with Duchenne muscular dystrophy: from adolescence to young men. Disabil Rehabil. 2017;39(14):1408–13.

DOI:10.1080/09638288.2016.1196398. Available:https://www.tandfonline.com/doi/abs/10.1080/09638288.2016.1196398.

Saito T, Kawai M, Kimura E, Ogata K, Takahashi T, Kobayashi M, et al. Study of Duchenne muscular dystrophy long-term survivors aged 40 years and older living in specialized institutions in Japan. Neuromuscul Disord. 2017;27(2):107–14.

DOI:10.1016/j.nmd.2016.11.012.

Van Ruiten HJA, Marini Bettolo C, Cheetham T, Eagle M, Lochmuller H, Straub V, et al. Why are some patients with Duchenne muscular dystrophy dying young: An analysis of causes of death in North East England. Eur J Paediatr Neurol EJPN Off J Eur Paediatr Neurol Soc. 2016;20(6):904–9.

DOI:10.1016/j.ejpn.2016.07.020.

Markati T, Oskoui M, Farrar MA, Duong T, Goemans N, Servais L. Emerging therapies for Duchenne muscular dystrophy. Lancet Neurol. 2022;21(9):814–29.

DOI:10.1016/S1474-4422(22)00125-9.

Van Deutekom JCT, Bremmer-Bout M, Janson AAM, Ginjaar IB, Baas F, Den Dunnen JT, et al. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells. Hum Mol Genet. 2001;10(15):1547–54.

DOI:10.1093/hmg/10.15.1547.

Available:https://academic.oup.com/hmg/article/10/15/1547/587689.

Lim KRQ, Woo S, Melo D, Huang Y, Dzierlega K, Shah MNA, et al. Development of DG9 peptide-conjugated single- and multi-exon skipping therapies for the treatment of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2022;119(9).

DOI:10.1073/pnas.2112546119.

Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, et al. Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol. 2013;74(5):637–47.

DOI:10.1002/ana.23982.

Available:https://onlinelibrary.wiley.com/doi/full/10.1002/ana.23982.

Alfano LN, Charleston JS, Connolly AM, Cripe L, Donoghue C, Dracker R, et al. Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy. Medicine (Baltimore). 2019;98(26):e15858.

DOI:10.1097/MD.0000000000015858. /pmc/articles/PMC6617421/?report=abstract.

Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol. 2016;79(2):257–71.

DOI:10.1002/ana.24555.

Available:https://onlinelibrary.wiley.com/doi/full/10.1002/ana.24555.

Iff J, Gerrits C, Zhong Y, Tuttle E, Birk E, Zheng Y, et al. Delays in pulmonary decline in eteplirsen-treated patients with Duchenne muscular dystrophy. Muscle Nerve. 2022;66(3):262–9. DOI:10.1002/mus.27662.

Muntoni F, Frank D, Sardone V, Morgan J, Schnell F, Charleston J, et al. Golodirsen Induces Exon Skipping Leading to Sarcolemmal Dystrophin Expression in Duchenne Muscular Dystrophy Patients With Mutations Amenable to Exon 53 Skipping (S22.001). Neurology. 2018;90(15 Supplement).

Frank DE, Schnell FJ, Akana C, El-Husayni SH, Desjardins CA, Morgan J, et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology. 2020;94(21):e2270–82.

DOI:10.1212/WNL.0000000000009233

Available:https://n.neurology.org/content/94/21/e2270.

Servais L, Mercuri E, Straub V, Guglieri M, Seferian AM, Scoto M, et al. Long-term safety and efficacy data of golodirsen in ambulatory patients with duchenne muscular dystrophy amenable to exon 53 skipping: a first-in-human, multicenter, two-part, open-label, phase 1/2 trial. Nucleic Acid Ther. 2022;32(1):29–39.

DOI:10.1089/nat.2021.0043.

Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, Van Deutekom J, Van Ommen GJ, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations [homepage on the Internet]. Human Mutation. Hum Mutat. 2009 [cited 2020 Sep 22];30:293–9 DOI:10.1002/humu.20918.

Available:https://pubmed.ncbi.nlm.nih.gov/19156838/.

Clemens PR, Rao VK, Connolly AM, Harper AD, Mah JK, Smith EC, et al. Safety, tolerability, and efficacy of viltolarsen in boys with duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 2020;77(8):982–91. DOI:10.1001/jamaneurol.2020.1264.

Available:https://jamanetwork.com/.

van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med. 2007; 357(26):2677–86.

DOI:10.1056/NEJMoa073108.

Vila MC, Novak JS, Benny Klimek M, Li N, Morales M, Fritz AG, et al. Morpholino-induced exon skipping stimulates cell-mediated and humoral responses to dystrophin in mdx mice. J Pathol. 2019;248(3):339–51.

DOI:10.1002/path.5263. /pmc/articles/PMC6579705/?report=abstract.

Barton-Davis ER, Cordier L, Shoturma DI, Leland SE, Sweeney HL. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest. 1999;104(4):375–81.

DOI:10.1172/JCI7866.

Roy B, Friesen WJ, Tomizawa Y, Leszyk JD, Zhuo J, Johnson B, et al. Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc Natl Acad Sci U S A. 2016;113(44):12508–13.

DOI:10.1073/pnas.1605336113

Available:www.pnas.org/cgi/doi/10.1073/pnas.1605336113.

McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10101):1489–98. DOI:10.1016/S0140-6736(17)31611-2.

Goodenough E, Robinson TM, Zook MB, Flanigan KM, Atkins JF, Howard MT, et al. Cryptic MHC class I-binding peptides are revealed by aminoglycoside-induced stop codon read-through into the 3’ UTR. Proc Natl Acad Sci U S A. 2014;111(15):5670–5.

DOI:10.1073/pnas.1402670111

Available:www.pnas.org/cgi/doi/10.1073/pnas.1402670111.

Lee S-J. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol. 2004;20(1):61–86.

DOI:10.1146/annurev.cellbio.20.012103.135836. Available:http://www.annualreviews.org/doi/10.1146/annurev.cellbio.20.012103.135836.

Shieh PB. Emerging strategies in the treatment of duchenne muscular dystrophy. Neurother J Am Soc Exp Neurother. 2018;15(4):840–8.

DOI:10.1007/s13311-018-00687-z.

Bogdanovich S, Krag TOB, Barton ER, Morris LD, Whittemore LA, Ahima RS, et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature. 2002;420(6914):418–21. DOI:10.1038/nature01154.

Available:https://www.nature.com/articles/nature01154.

Wagner KR, McPherron AC, Winik N, Lee SJ. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol. 2002;52(6):832–6.

DOI:10.1002/ana.10385

Available:https://onlinelibrary.wiley.com/doi/full/10.1002/ana.10385

Campbell C, McMillan HJ, Mah JK, Tarnopolsky M, Selby K, McClure T, et al. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial. Muscle Nerve. 2017;55(4):458–64.

DOI:10.1002/mus.25268.

Available:http://doi.wiley.com/10.1002/mus.25268.

Rodino-Klapac LR, Janssen PML, Shontz KM, Canan B, Montgomery CL, Griffin D, et al. Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model. Hum Mol Genet. 2013;22(24):4929–37.

DOI:10.1093/hmg/ddt342

Available:https://academic.oup.com/hmg/article/22/24/4929/567402.

Ponnusamy S, Sullivan R, Zafar N, Narayanan R. Tissue-Selective Androgen Receptor Modulators (SARMs) for the treatment of Duchenne muscular dystrophy (DMD). Neuromuscul Disord. 2016;26:S130.

DOI:10.1016/j.nmd.2016.06.163

Available:http://www.nmd-journal.com/article/S0960896616304564/fulltext.

Ponnusamy S, Sullivan RD, You D, Zafar N, Yang CH, Thiyagarajan T, et al. Androgen receptor agonists increase lean mass, improve cardiopulmonary functions and extend survival in preclinical models of Duchenne muscular dystrophy. Hum Mol Genet. 2017;26(13):2526–40. DOI:10.1093/hmg/ddx150.

Available:https://academic.oup.com/hmg/article/26/13/2526/3770516.

Yuasa K, Sakamoto M, Miyagoe-Suzuki Y, Tanouchi A, Yamamoto H, Li J, et al. Adeno-associated virus vector-mediated gene transfer into dystrophin-deficient skeletal muscles evokes enchanced immune response against the transgene product [homepage on the Internet]. Gene Therapy. Nature Publishing Group; 2002 [cited 2020 Sep 24];9:576–88 DOI:10.1038/sj.gt.3301829. www.nature.com/gt.

Gregorevic P, Allen JM, Minami E, Blankinship MJ, Haraguchi M, Meuse L, et al. rAAV6-microdystrophin preserves muscle function and extends lifespan in severely dystrophic mice. Nat Med. 2006;12(7):787–9.

DOI:10.1038/nm1439.

Muntoni F, Cau M, Ganau A, Congiu R, Arvedi G, Mateddu A, et al. Deletion of the dystrophin muscle-promoter region associated with x-linked dilated cardiomyopathy. N Engl J Med. 1993;329(13):921–5.

DOI:10.1056/NEJM199309233291304. Available:http://www.nejm.org/doi/abs/10.1056/NEJM199309233291304.

Towbin JA, Hejtmancik JF, Brink P, Gelb B, Zhu XM, Chamberlain JS, et al. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation. 1993;87(6):1854–65.

DOI:10.1161/01.CIR.87.6.1854

Available:https://www.ahajournals.org/doi/10.1161/01.CIR.87.6.1854

Schneider J, Gonzalez J, Brown K, Golebiowski D, Ricotti V, Quiroz J, et al. SGT-001 Micro-dystrophin gene therapy for Duchenne muscular dystrophy. Neuromuscul Disord. 2017;27:S188.

DOI:10.1016/j.nmd.2017.06.343

Available:http://www.nmd-journal.com/article/S0960896617309161/fulltext.

Chicoine LG, Rodino-Klapac LR, Shao G, Xu R, Bremer WG, Camboni M, et al. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin α2 surrogates. Mol Ther. 2014;22(4):713–24.

DOI:10.1038/mt.2013.246.

Flanigan KM, Vetter TA, Simmons TR, Iammarino M, Frair EC, Rinaldi F, et al. A first-in-human phase I/IIa gene transfer clinical trial for Duchenne muscular dystrophy using rAAVrh74.MCK.GALGT2. Mol Ther - Methods Clin Dev. 2022;27:47–60.

DOI:https://doi.org/10.1016/j.omtm.2022.08.009. Available:https://www.sciencedirect.com/science/article/pii/S232905012200119X

Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell. 1997;90(4):717–27.

DOI:10.1016/S0092-8674(00)80532-2.

Clerk A, Morris GE, Dubowitz V, Davies KE, Sewry CA. Dystrophin-related protein, utrophin, in normal and dystrophic human fetal skeletal muscle. Histochem J. 1993;25(8):554–61. DOI:10.1007/bf00173053.

Available:https://link.springer.com/article/10.1007/BF00173053.

Rigoletto C, Prelle A, Ciscato P, Moggio M, Comi G, Fortunato F, et al. Utrophin expression during human fetal development. Int J Dev Neurosci. 1995;13(6):585–93.

DOI:10.1016/0736-5748(95)00039-J

Available:http://doi.wiley.com/10.1016/0736-5748%2895%2900039-J.

Tinsley JM, Potter AC, Phelps SR, Fisher R, Trickett JI, Davies KE. Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature. 1996;384(6607):349–53.

DOI:10.1038/384349a0.

Rooney JE, Gurpur PB, Burkin DJ. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2009;106(19):7991–6.

DOI:10.1073/pnas.0811599106

Available:www.pnas.org/cgi/doi/10.1073/pnas.0908890106

Tanaka K, Aritake K, Tayama M, Sasaki E, Utsugi T, Sasaoka T, et al. Novel inhibitor of hematopoietic prostaglandin D synthase improves the muscle disorder in an experimental model of Duchenne muscular dystrophy. Neuromuscul Disord. 2014;24(9–10):821. DOI:10.1016/j.nmd.2014.06.102

Available:http://www.nmd-journal.com/article/S0960896614002533/fulltext.

Komaki H, Takeshita E, Motohashi Y, Ishiyama A, Sasaki M, Miyoshi K, et al. A Phase I, single- and repeated-dose study of TAS-205, a novel inhibitor of hematopoietic prostaglandin D synthase, in patients with Duchenne muscular dystrophy. Neuromuscul Disord. 2017;27:S218. DOI:10.1016/j.nmd.2017.06.445.

Available:http://www.nmd-journal.com/article/S0960896617310180/fulltext.

Peter AK, Marshall JL, Crosbie RH. Sarcospan reduces dystrophic pathology: Stabilization of the utrophin-glycoprotein complex. J Cell Biol. 2008;183(3):419– 27.

DOI:10.1083/jcb.200808027

Available:www.jcb.org/cgi/doi/10.1083/jcb.200808027.

Marshall JL, Oh J, Chou E, Lee JA, Holmberg J, Burkin DJ, et al. Sarcospan integration into laminin-binding adhesion complexes that ameliorate muscular dystrophy requires utrophin and α7 integrin. Hum Mol Genet. 2014;24(7): 2011–22.

DOI:10.1093/hmg/ddu615

Available:https://academic.oup.com/hmg/article/24/7/2011/597194.

Iwata Y, Katanosaka Y, Hisamitsu T, Wakabayashi S. Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of p2 receptors. Am J Pathol. 2007;171(5):1576–87.

DOI:10.2353/ajpath.2007.070452.

Previtali SC, Gidaro T, Díaz-Manera J, Zambon A, Carnesecchi S, Roux-Lombard P, et al. Rimeporide as a first- in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with Duchenne Muscular Dystrophy. Pharmacol Res. 2020;159:104999.

DOI:10.1016/j.phrs.2020.104999.

Desguerre I, Mayer M, Leturcq F, Barbet JP, Gherardi RK, Christov C. Endomysial fibrosis in duchenne muscular dystrophy: A marker of poor outcome associated with macrophage alternative activation. J Neuropathol Exp Neurol. 2009;68(7):762–73. DOI:10.1097/NEN.0b013e3181aa31c2.

Available:https://pubmed-ncbi-nlm-nih-gov.proxy.kcumb.edu/19535995/.

Hoffman EP, Schwartz BD, Mengle-Gaw LJ, Smith EC, Castro D, Mah JK, et al. Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function. Neurology. 2019;93(13):E1312–23.

DOI:10.1212/WNL.0000000000008168

Available:https://n.neurology.org/content/93/13/e1312.

Milne J, Donovan J, Sweeney L, Sleeper M, Hammers D, Jirousek M, et al. CAT-1004, a novel anti-Inflammatory agent under development for treatment of Duchenne muscular dystrophy. Neuromuscul Disord. 2014;24(9–10): 825.

DOI:10.1016/j.nmd.2014.06.115.

Available:http://www.nmd-journal.com/article/S0960896614002661/fulltext.

Mah JK, Clemens PR, Guglieri M, Smith EC, Finkel RS, Tulinius M, et al. Efficacy and Safety of Vamorolone in Duchenne Muscular Dystrophy: A 30-Month Nonrandomized Controlled Open-Label Extension Trial. JAMA Netw Open. 2022;5(1):e2144178–e2144178.

DOI:10.1001/jamanetworkopen.2021.44178. Available:https://doi.org/10.1001/jamanetworkopen.2021.44178.

Taylor M, Jefferies J, Byrne B, Lima J, Ambale-Venkatesh B, Ostovaneh MR, et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology. 2019;92(8):e866 LP-e878.

DOI:10.1212/WNL.0000000000006950

Available:http://n.neurology.org/content/92/8/e866.abstract.

Wehling-Henricks M, Oltmann M, Rinaldi C, Myung KH, Tidball JG. Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy. Hum Mol Genet. 2009;18(18):3439–51.

DOI:10.1093/hmg/ddp288

Available:https://academic.oup.com/hmg/article/18/18/3439/554402.

Adamo CM, Dai DF, Percival JM, Minami E, Willis MS, Patrucco E, et al. Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2010;107(44):19079–83.

DOI:10.1073/pnas.1013077107

Available:www.pnas.org/cgi/doi/10.1073/pnas.1013077107.

Percival JM, Whitehead NP, Adams ME, Adamo CM, Beavo JA, Froehner SC. Sildenafil reduces respiratory muscle weakness and fibrosis in the mdx mouse model of Duchenne muscular dystrophy. J Pathol. 2012;228(1):77–87.

DOI:10.1002/path.4054

Available:http://doi.wiley.com/10.1002/path.4054.

Nelson MD, Rader F, Tang X, Tavyev J, Nelson SF, Miceli MC, et al. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology. 2014;82(23):2085–91.

DOI:10.1212/WNL.0000000000000498

Available:https://n.neurology.org/content/82/23/2085.

Mizunoya W, Upadhaya R, Burczynski FJ, Wang G, Anderson JE. Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Physiol. 2011;300(5):C1065–77.

DOI:10.1152/ajpcell.00482.2010

Available:https://www.physiology.org/doi/10.1152/ajpcell.00482.2010

Sciorati C, Miglietta D, Buono R, Pisa V, Cattaneo D, Azzoni E, et al. A dual acting compound releasing nitric oxide (NO) and ibuprofen, NCX 320, shows significant therapeutic effects in a mouse model of muscular dystrophy. Pharmacol Res. 2011;64(3):210–7.

DOI:10.1016/j.phrs.2011.05.003.

Nelson MD, Rosenberry R, Barresi R, Tsimerinov EI, Rader F, Tang X, et al. Sodium nitrate alleviates functional muscle ischaemia in patients with Becker muscular dystrophy. J Physiol. 2015;593(23):5183–200.

DOI:10.1113/JP271252.

Available:http://doi.wiley.com/10.1113/JP271252.

Li G, Jin M, Li Z, Xiao Q, Lin J, Yang D, et al. Mini-dCas13X-mediated RNA editing restores dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy. J Clin Invest; 2022. DOI:10.1172/JCI162809.

Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, et al. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015;4(1):143–54.

DOI:10.1016/j.stemcr.2014.10.013.

Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause duchenne muscular dystrophy. Nat Commun. 2015;6(1):1– 13.

DOI:10.1038/ncomms7244

Available:www.nature.com/naturecommunications.

Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017;8(1):1–10.

DOI:10.1038/ncomms14454

Available:http://www.dmd.nl.

Min YL, Li H, Rodriguez-Caycedo C, Mireault AA, Huang J, Shelton JM, et al. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci Adv. 2019;5(3):eaav4324.

DOI:10.1126/sciadv.aav4324

Available:http://advances.sciencemag.org/.

Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science (80- ). 2014; 345(6201):1184–8.

DOI:10.1126/science.1254445

Available:https://science.sciencemag.org/content/345/6201/1184.

Chemello F, Bassel-Duby R, Olson EN. Correction of muscular dystrophies by CRISPR gene editing. J Clin Invest. 2020;130(6):2766–76.

Available:DOI:10.1172/JCI136873.

Young CS, Mokhonova E, Quinonez M, Pyle AD, Spencer MJ. Creation of a Novel humanized dystrophic mouse model of duchenne muscular dystrophy and application of a crispr/cas9 gene editing therapy. J Neuromuscul Dis. 2017;4(2):139–45.

DOI:10.3233/JND-170218.

Sui T, Lau YS, Liu D, Liu T, Xu L, Gao Y, et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9. DMM Dis Model Mech. 2018;11(6).

DOI:10.1242/dmm.032201.

Available:https://dmm.biologists.org/content/11/6/dmm032201.

Shimo T, Hosoki K, Nakatsuji Y, Yokota T, Obika S. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping. J Hum Genet. 2018;63(3):365–75.

DOI:10.1038/s10038-017-0400-0.

Available:https://www.nature.com/articles/s10038-017-0400-0.

Lim KRQ, Nguyen Q, Dzierlega K, Huang Y, Yokota T. CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy. Genes (Basel). 2020;11(3):342.

DOI:10.3390/genes11030342

Available:https://www.mdpi.com/2073-4425/11/3/342.

Mehravar M, Shirazi A, Nazari M, Banan M. Mosaicism in CRISPR/Cas9-mediated genome editing. Developmental Biology. Elsevier Inc. 2019;445:156–62

DOI:10.1016/j.ydbio.2018.10.008.

Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, et al. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat Med. 2019;25(3):427–32.

DOI:10.1038/s41591-019-0344-3.

Available:https://www.nature.com/articles/s41591-019-0344-3.

Wells DJ. Tracking progress: an update on animal models for Duchenne muscular dystrophy. Disease Models & Mechanisms. 2018;11.

DOI:10.1242/dmm.035774.

Wang D-N, Wang Z-Q, Jin M, Lin M-T, Wang N. CRISPR/Cas9-based genome editing for the modification of multiple duplications that cause Duchenne muscular dystrophy. Gene Ther. 2022;29(12):730–7.

DOI:10.1038/s41434-022-00336-3

Available:https://doi.org/10.1038/s41434-022-00336-3.

Viollet L, Thrush PT, Flanigan KM, Mendell JR, Allen HD. Effects of angiotensin-converting enzyme inhibitors and/or beta blockers on the cardiomyopathy in duchenne muscular dystrophy. Am J Cardiol. 2012;110(1):98–102.

DOI:10.1016/j.amjcard.2012.02.064.

Duboc D, Meune C, Pierre B, Wahbi K, Eymard B, Toutain A, et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am Heart J. 2007;154(3):596–602.

DOI:10.1016/j.ahj.2007.05.014.

Raman S V., Hor KN, Mazur W, Halnon NJ, Kissel JT, He X, et al. Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2015;14(2):153–61.

DOI:10.1016/S1474-4422(14)70318-7.

Buyse GM, Goemans N, van den Hauwe M, Thijs D, de Groot IJM, Schara U, et al. Idebenone as a novel, therapeutic approach for Duchenne muscular dystrophy: Results from a 12 month, double-blind, randomized placebo-controlled trial. Neuromuscul Disord. 2011;21(6):396–405. DOI:10.1016/j.nmd.2011.02.016.

Buyse GM, Voit T, Schara U, Straathof CSM, D’Angelo MG, Bernert G, et al. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): A double- blind randomised placebo-controlled phase 3 trial. Lancet. 2015;385(9979): 1748–57.

DOI:10.1016/S0140-6736(15)60025-3.

Meier T, Voit T, Schara U, Straathof CSM, D’Angelo MG, Bernert G, et al. Idebenone reduces respiratory complications in patients with Duchenne muscular dystrophy. Neuromuscul Disord. 2016; 26(8):473–80.

DOI:10.1016/j.nmd.2016.05.008.

Ren S, Yao C, Liu Y, Feng G, Dong X, Gao B, et al. Antioxidants for treatment of duchenne muscular dystrophy: A systematic review and meta-analysis. Eur Neurol. 2022;85(5):377–88.

DOI:10.1159/000525045.

Available:https://www.karger.com/DOI/10.1159/000525045.

Pillers DAM, Bulman DE, Weleber RG, Sigesmund DA, Musarella MA, Powell BR, et al. Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nat Genet. 1993;4(1):82–6.

DOI:10.1038/ng0593-82

Available:https://www.nature.com/articles/ng0593-82.

Fitzgerald KM, Cibis GW, Giambrone SA, Harris DJ. Retinal signal transmission in Duchenne muscular dystrophy: Evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway. J Clin Invest. 1994;93(6):2425–30.

DOI:10.1172/JCI117250.

Sigesmund DA, Weleber RG, Pillers DAM, Westall CA, Panton CM, Powell BR, et al. characterization of the ocular phenotype of duchenne and becker muscular dystrophy. Ophthalmology. 1994;101(5): 856–65.

DOI:10.1016/S0161-6420(13)31249-4.

Barboni MTS, Joachimsthaler A, Roux MJ, Nagy ZZ, Ventura DF, Rendon A, et al. Retinal dystrophins and the retinopathy of Duchenne muscular dystrophy. Prog Retin Eye Res. 2022;101137.

DOI:10.1016/j.preteyeres.2022.101137.

Pillers DA, Fitzgerald KM, Duncan NM, Rash SM, White RA, Dwinnell SJ, et al. Duchenne/Becker muscular dystrophy: correlation of phenotype by electroretinography with sites of dystrophin mutations. Hum Genet. 1999; 105(1–2):2–9.

DOI:10.1007/s004399900111.

D’souza VN, Man NT, Morris GE, Karges W, Pillers DAM, Ray PN. A novel dystrophin isoform is required for normal retinal electrophysiology. Hum Mol Genet. 1995;4(5):837–42. DOI:10.1093/hmg/4.5.837.

Available:https://academic.oup.com/hmg/article/4/5/837/708421.

Gaedigk R, Law DJ, Fitzgerald-Gustafson KM, McNulty SG, Nsumu NN, Modrcin AC, et al. Improvement in survival and muscle function in an mdx/utrn(-/-) double mutant mouse using a human retinal dystrophin transgene. Neuromuscul Disord. 2006; 16(3):192–203.

DOI:10.1016/j.nmd.2005.12.007.

White RA, Silvey M, Logsdon DP. Research from the bedside to the lab bench & back. Mo Med. 2012;109(3):195–8.