A New Era for Gold Nitrate Nanoparticle Applications

I. T. D. Botelho

Departamento de Física, GRUMA—Grupo de Magnetoeletricidade, Universidade Estadual do Maranhão, Rede Nordeste de Ensino – RENOEN, Campus Universitário Paulo VI, São Luís, Maranhão, Brazil.

S. R. B. Ferreira

Centro de Estudos Superiores de Pinheiro – CESPI, Universidade Estadual do Maranhão, Rua Diogo dos Reis, Matriz, Pinheiro – MA, Faculdade Estácio, Rua Grande, 1455 – Centro, São Luís – MA, Brazil.

W. S. Ferreira *

Departamento de Física, GRUMA—Grupo de Magnetoeletricidade, Universidade Estadual do Maranhão, Rede Nordeste de Ensino – RENOEN, Campus Universitário Paulo VI, São Luís, Maranhão, Brazil.

*Author to whom correspondence should be addressed.


Gold nanoparticles are included in the group of metallic nanoparticles, and their application has become possible recently because of new optical equipment, electronic devices, and probes capable of manufacturing, detecting, and identifying biomolecules of medical interest. Among the range of nanoparticles, one stands out: the gold nanoparticle. It doesn't possess toxic characteristics and can be administered in vivo. In this study, the structural, optical and electronic properties of gold nitrate were investigated using the density functional theory formalism, considering the gradient generalized approximation. Finally, we observe its application in nanobiotechnology, specifically photothermal applications.

Keywords: Nanoscience, gold, biomedicine, DFT

How to Cite

Botelho, I. T. D., Ferreira , S. R. B., & Ferreira , W. S. (2024). A New Era for Gold Nitrate Nanoparticle Applications. Biotechnology Journal International, 28(1), 1–8. https://doi.org/10.9734/bji/2024/v28i1708


Download data is not yet available.


Hupffer HM, Lazzaretti LL. Nanotechnology and its regulation in Brazil. Management and Development Magazine. 2019;3(16):153–177.

Marques GC. Physics: trends and perspectives. São Paulo. Physics bookstore; 2005.

Jeevanadam J et al. Review on nanoparticles and nanostructured materials: History, sources, toxicity, and regulations. Beilstein Journal of Nanotechnology. 2018;9:1050-1074.

Engel S. Federal University of Paraná Biological Potentials of Gold Nanoparticles - Tumors as Curitiba Target Available:https://acervodigital.ufpr.br/bitstream/handle/1884/61175/JULIANA%20DOS%20SANTOS%20ENGEL.pd Access in: 27 June. 2023.

MA X, et al. Synthesis of gold nanocatalysts supported on carbon nanotubes by using electroless plating technique. Materials Chemistry and Physics. 2006;97:351-356.

Brown TL, et al. Core Science: Pearson-Prentice Hall, 9th Edition, São Paulo; 2005.

Maar JH. History of chemistry: From the beginnings to Lavoisier. Editorial Concept; 2008.

L’azou B, et al. In vitro effects of nanoparticles on renal cells. Particle and fiber toxicology. 2008;5:1.

Junqueira JSS, Silva PP, Guerra W. New Chemistry at School. 2012;34:45-46.

Kobal M. Silica-coated gold nanoparticles (aushins) as photothermal agents in the therapy of cells derived from breast carcinoma. Available:https://repositorio.unesp.br/bitstream/handle/11449/217588/kobal_mb_me_prud.pdf?sequence=5&isAllowed=y Accessed in: 17 Aug. 2023.

Pubchem. Available:https://pubchem.ncbi.nlm.nih.gov/compound/102601521 Accessed in: 31 Dec. 2023.

Perdew J, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems Phys. Rev. B. 1981;23:5048-5079.

Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Phys. Rev. B. 1990;41:7892-7895. DOI: https://doi.org/10.1103/PhysRevB.41.7892

Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations Phys. Rev. B. 1976;13:5188-5192.


Ferreira WS. Optoelectronic properties of rare earth materials from first principles calculations: EuMnO3 versus GdMnO3, Ferroelectrics. 2023;1(613):41-51 DOI: 10.1080/00150193.2023.2215521