Open Access Opinion Article

Nano-Bio Challenge: New Approaches in Agricultural Production

Kağan Tolga Cinisli, Ela Akin, Neslihan Dikbaş

Biotechnology Journal International, Page 15-18
DOI: 10.9734/bji/2020/v24i330103

Despite climate change scenarios, new research on improving yield and quality in agricultural production is extremely important. The use of nanomaterials and plant-growth-promoting bacteria (PGPB) has been of interest to researchers in recent years. In the future, the creation of new nano-biotechnological products by using nanomaterials together with bacteria will be more advantageous than conventional methods. Thus, the number of fertilizers applied on farmland will be reduced and maximum efficiency will be achieved with minimum input. The number of chemical inputs applied to agricultural areas will be reduced and effective protection against various plant stress factors will be provided. By producing Nano-bio-active. It is expected to increase mineral availability in farmland according to chemical formulations. The results obtained are certain to provide an effective benefit to the agricultural area and nature. Also, nano-biotechnological methods with new research potential are important for serving scientific researchers.

Open Access Original Research Article

Comparative Physiological, Biochemical and Transcript Response to Drought in Sorghum Genotypes

Joseph Noble Amoah, Daniel Antwi-Berko

Biotechnology Journal International, Page 1-14
DOI: 10.9734/bji/2020/v24i330102

Sorghum [Sorghum bicolor (L.) Moench] is considered as an important staple crop in the tropical regions. However, the productivity of this useful crop is hindered by drought which contributes to significant yield reduction. The present study aimed to decipher the effects of drought stress on physiological, biochemical and gene expression changes in sorghum genotypes and to ascertain the differences in their response to drought stress. To achieve these objectives, six sorghum genotypes were grown in pot culture in a greenhouse, in a randomized complete block design and exposed to water stress treatment for 10 days. From the study, drought stress caused a significant (P < .05) reduction in plant height, leaf water and chlorophyll contents while the proline, malondialdehyde (MDA), soluble sugar, electrolyte leakage (EL), hydrogen peroxide (H2O2) and antioxidant enzymes activity increased significantly (P < .05) and differentially in all sorghum genotypes. Among the genotypes investigated, PI 585456 showed enhanced performance and was considered as the most tolerant to drought in relation to plant growth and water relation, membrane status, photosynthetic activity, ROS and osmolytes accumulation and antioxidant enzymes activity. Furthermore, the transcript expression analyses of different categories of drought-responsive genes, viz; antioxidant-related, osmolytes biosynthesis-related, dehydrin-related, photosystem-related and transcription-related were differentially upregulated in sorghum genotypes investigated. The results revealed the differences in metabolic response to drought among the genotypes, which accentuated the physiological, biochemical and molecular mechanism related to a specific response that may play a vital role in drought tolerance in sorghum.

Open Access Original Research Article

Isolation of High Lignolytic Bacteria from Termites’s Gut as Potential Booster in for Enhanced Biogas Production

U. S. Anukam, J. N. Ogbulie, C. Akujuobi, W. Braide

Biotechnology Journal International, Page 19-23
DOI: 10.9734/bji/2020/v24i330104

Bacteria strain capable of degrading lignin, cellulose and hemicellulose were isolated from wood Feeding termite gut using spread plate technique. The 16S rRNA gene sequencing methodology was adopted in the identification of the isolate. The isolate’s Morganella morganii (strain S4L2C (MH745964) were found to have a high lignin degradation potential. The organism was able to reduce the lignin content of rice straw from 17.43% to 7.29% after 30 days of pretreatment with 53.27% reduction of the lignin content. This study revealed that termite’s gut bacteria are Potential sources of lignocellulose degrading bacteria for the biological conversion of biomass to biogas production.

Open Access Original Research Article

Identification and Expression Analysis of Stress Responsive Genes in Lentil (Lens culinaris)

Annu Yadav, Himanshi ., Shruti ., Jitender Singh, Pankaj Kumar, Shivani Khanna, Anil Sirohi

Biotechnology Journal International, Page 24-34
DOI: 10.9734/bji/2020/v24i330105

Plants during their growth, experience periodic stress conditions both abiotic (adverse environmental conditions) as well as biotic (infection by pathogens). They appear to respond to these adverse conditions by modulating the expression of many genes. One of the pronounced effects of stress on plant is the enhanced synthesis of a set of proteins-termed ' stress proteins'. Lentil contains asset of genes/proteins which helps this crop to overcome abiotic stresses. In the present study, HSP70 (Heat Shock Protein), LEA (Late Embryogenesis Abundant) and Aldolase genes were identified and cloned in pTZ57RT vector followed by sequencing. Expression analysis was done through Q-PCR which was assessed by using cDNA from all the heat, drought and salinity stressed and unstressed lentil cotyledons. The highest level of transcript of HSP70 was realized upon exposure to heat at 45°C for 3 hour followed by at 45°C for 2 hour and lowest at 40°C for 1hour. LEA gene was identified under drought and salinity stress and highest transcript was at 20% PEG for 3 hour (drought stress) and in salinity stress highest transcript was at 150 mm for 6 hour.  For Aldolase gene highest transcript was recorded after 3, 6 and 12 hr at 100 mM, 150 mM, 200 mM of salinity stress respectively.  From these studies it can be concluded that heat shock protein gene, LEA, and aldolase present in lentil which can be exploited in overcoming the abiotic stresses for obtaining the higher productivity in crop plants through genetic engineering.

Open Access Original Research Article

Characterization of Clay Modified with Alkali Extracted from Plantain Peels

Oluwole Oluwatoyin Oniya, Ebenezer Olujimi Dada, Ibrahim Adewale Adekunle, Akeem Olanrewaju Arinko, Taofeeq Olalekan Salawudeen

Biotechnology Journal International, Page 35-43
DOI: 10.9734/bji/2020/v24i330106

Modification of clays and clay minerals by using chemical reagents is receiving research attention due to the use of clay in various industrial applications where it may be utilized as adsorbent and catalyst carriers among others. The employed synthetic chemicals, however, unavoidably result in high costs and generate negative impact within the environment. The option to replace the synthetic compounds with non-synthetic materials to cut down cost and to reduce environmental impact has not been properly explored. In this study, the effect of KOH extracted from plantain peel obtained locally on clay modification was investigated. A varying concentration of the extracted KOH was used to treat the clay obtained at Asa River valley in Kwara State in Nigeria. Characterization of the modified clay samples was carried out using Scanning Electron Microscope (SEM), X-ray Florescence (XRF) and Fourier Transform Infrared Spectroscopy (FTIR). The micro structural images of the modified clays clearly showed the effect of KOH concentrations on porosity enhancement in the selected samples. X-ray fluorescence analysis of the Kaolin showed a high silica and aluminum content while an appreciable increase in K2O was also observed in the modified clay compared to the raw Kaolin. The FTIR spectra of the modified clay showed the formation of some functional groups (O-H, C-H, C=C, C-O, Al-O-Si,) within the band range of 500 to 4000 cm-1. It can be concluded that the clay treated with alkali obtained from green source can effectively replace those produced via conventional methods which involve the use of synthetic materials.