Polymorphism Evaluation of TLR2 Gene Associated with Endometritis Infection in Buffalo Reared in Egypt

Ahlam A. Abou Mossallam

Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12311 Dokki, Giza, Egypt.

Noha M. Osman

Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12311 Dokki, Giza, Egypt.

Othman E. Othman

Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12311 Dokki, Giza, Egypt.

Eman R. Mahfouz *

Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12311 Dokki, Giza, Egypt.

*Author to whom correspondence should be addressed.


Background and Aim: Toll-like receptors (TLRs) are important for the recognition of pathogen-associated molecular patterns. Single nucleotide polymorphisms (SNPs) within TLRs have a potential impact on the alteration of susceptibility or resistance to inflammatory diseases. This work focused on a case-control study for the distribution of SNPs in TLR2 gene to test their role for endometritis occurrence in river buffalo.

Materials and Methods: Egyptian buffaloes from the slaughterhouse were tested, where forty samples divided into apparently healthy uteri (20n) and clinically infected ones (20n) were used to detect the genetic association between TLR2 gene SNPs and endometritis disease.

Results: Nineteen novel polymorphic sites were identified. Three SNPs were found to be statistically significant. AA genotype at 5`UTR and CC genotype at the coding region had significant association with susceptibility to endometritis, while GG genotype at 5`UTR had significant association with resistance to endometritis. Polyphen 2 analysis revealed three amino acids substitutions in TLR2 protein having potential functional significance. Haplotype reconstruction revealed the statistical significance of haplotype frequencies between cases and controls indicating its association with the occurrence of endometritis.

Conclusions: It is to be concluded that the innate immune activation response may be interfered by the effect of polymorphisms and mutations of TLRs due to the reduction of the protein ability to recognize Pathogen associated Molecular pattern (PAMPs).

Keywords: Bubalus bubalis, TLR2, endometritis, SNPs

How to Cite

Mossallam, A. A. A., Osman, N. M., Othman, O. E., & Mahfouz, E. R. (2022). Polymorphism Evaluation of TLR2 Gene Associated with Endometritis Infection in Buffalo Reared in Egypt. Biotechnology Journal International, 26(5), 45–55. https://doi.org/10.9734/bji/2022/v26i5661


Download data is not yet available.


Lewandowski CM. The effects of brief mindfulness intervention on acute pain experience: An examination of individual difference Dissertation. Southern Illinois University Carbondale; 2015.

Sheldon IM, Roberts MH. Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium. PLoS One. 2015;5(9): e12906.

Azawi OI, Ali AJ, Lazim EH. Pathological and anatomical abnormalities affecting buffalo cows reproductive tracts in Mosul. Iraqi J. Vet. Sci. 2008;22(2):59-67.

Ajevar G, Muthu S, Sarkar M, Kumar H, Das GK, Krishnaswamy N. Transcriptional profile of endometrial TLR4 and 5 genes during the estrous cycle and uterine infection in the buffalo (Bubalus bubalis). Vet. Res. Commun. 2014;38(2): 171-176.

Goshen T, Shpigel NY. Evaluation of intrauterine antibiotic treatment of clinical metritis and retained fetal membranes in dairy cows.Theriogenol. 2006;66(9):2210-2218.

Azawi OI. Pathogenesis of postpartum metritis in buffaloes: A review. Buffalo Bull. 2013;32(1).

Azawi OI, Omran SN, Hadad JJ. Clinical, bacteriological, and histopathological study of toxic puerperal metritis in Iraqi buffalo. J. Dairy Sci. 2007;90(10):4654-4660.

Herath S, Lilly ST, Santos NR, Gilbert RO, Goetze L, Bryant CE, White JO, Cronin J, Sheldon IM. Expression of genes associated with immunity in the endometrium of cattle with disparate postpartum uterine disease and fertility. Reprod. Biol. Endocrinol. 2009;7(1):55.

Jang JH, Shin HW, Lee JM, Lee HW, Kim EC, Park SH. An overview of pathogen recognition receptors for innate immunity in dental pulp. Med. Inflamm. 2015;794143. Available:http://dx.doi.org/10.1155/2015/794143

Zhu L, Yuan H, Jiang T, Wang R, Ma H, Zhang S. Association of TLR2 and TLR4 polymorphisms with risk of cancer: A meta-analysis. PloS one. 2013;8(12):e82858.

Tschirren B, Andersson M, Scherman K, Westerdahl H, Mittl PR, Råberg L. Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infectionin a wild rodent population. Proc. Royal Society of London B: Biol. Sci. 2013;280(1759):20130364.

Thompson JD, Higgins DG, Gibson TJ. Clustal W: improving the sensitivityof progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(11): 4673-4680.

McHugh ML. The odds ratio: Calculation, usage, and interpretation. Bioch. Medica. 2009;19(2):120-6.

Bland JM, Altman DG. Calculating correlation coefficients with repeated observations: Part 2-Correlation between subjects. BMJ. 1995;310(6980):633.

Stephens JC, Schneider JA, Debra A, Tanguay DA, Julie Choi J, Tara Acharya T. Haplotype variation and linkage disequilibrium in 313 Human Genes. Sci. 2001;293(5529):489-493.

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-249.

Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, He S, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Liebert CA, Liu C, Lu F, Lu S, Marchler GH, Mullokandov M, Song JS, Tasneem A, Thanki N, Yamashita RA, Zhang D, Zhang N, Bryant SH. CDD: Specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 2009;37:205-210.

Galvao KN. Uterine diseases in dairy cows: Understanding the causes and seeking solutions. Anim. Reprod. 2013; 10(3):228-238.

Williams EJ, Fischer DP, Pfeiffer DU, England GC, Noakes DE, Dobson H, Sheldon IM. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the immune response in cattle. Theriogenol. 2005;63(1):102-117.

Bonnett BN, Martin SW, Gannon VP, Miller RB, Etherington WG. Endometrial biopsy in Holstein-Friesian dairy cows. III. Bacteriological analysis and correlations with histological findings. Canadian J. Vet. Res. 1991;55(2):168.

Hanafi EM, Ahmed WM, Abd El Moez SI, El Khadrawy HH, Abd El Hameed AR. Effect of clinical endometritis on ovarian activity and oxidative stress status in Egyptian buffalo cows. American-Eurasian J. Agri. Environ. Sci. 2008;4:530-536.

Udhayavel S, Malmarugan S, Palanisamy K, Rajeswar J. Antibiogram pattern of bacteria causing endometritis in cows. Vet. World. 2013;6(1):100.

Banerjee P, Gahlawat SK, Joshi J, Sharma U, Tantia MS, Vijh RK. Sequencing, characterization and phylogenetic analysis of TLR genes of Bubalus bubalis. DHR-IJBLS. 2012;3:137-158.

Alfano F, Peletto S, Lucibelli MG, Borriello G, Urciuolo G, Maniaci MG, Desiato R, Tarantino M, Barone A, Pasquali P, Acutis PL. Identification of single nucleotide polymorphisms in Toll-like receptor candidate genes associated with tuberculosis infection in water buffalo (Bubalus bubalis). BMC genetics. 2014;15(1):139.

Mariotti M, Williams JL, Dunner S, Valentini A, Pariset L. Polymorphisms within the toll-like receptor (TLR)-2,-4, and-6 genes in cattle.Diversity. 2009;1(1):7-18.

McDonald JH. Handbook of biological statistics. Sparky House Publishing; 2009.

Salanti G, Amountza G, Ntzani EE, Ioannidis JPA. Hardy–Weinberg equilibrium in genetic association studies: an empirical evaluation of reporting, deviations, and power. Eur. J. Human Genet. 2005;13:840-848.

Plantinga TS, Johnson MD, Scott WK, van de Vosse E, Edwards DRV, Smith PB, Alexander BD, Yang JC, Kremer D, Laird GM, Oosting M. Toll-like receptor 1 polymorphisms increase susceptibility to candidemia. J. Infect. Dis. 2012;205(6): 934-943.

Sun Q, Zhang Q, Xiao HP, Bai C. Toll-like receptor polymorphisms and tuberculosis susceptibility: A comprehensive meta-analysis. J. Huazhong Uni. Sci. Techno. 2015;35:157-168. [Med. Sci.].

Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PloS one. 2009;4(6):e5990.

Kannaki TR, Shanmugam M, Verma PC. Toll-like receptors and their role in animal reproduction. Anim. Reprod. Sci. 2011; 125(1):1-12.

Schnetzke U, Spies-Weisshart B, Yomade O, Fischer M, Rachow T, Schrenk K, Glaser A, von Lilienfeld-Toal M, Hochhaus A, Scholl S. Polymorphisms of Toll-like receptors (TLR2 and TLR4) are associated with the risk of infectious complications in acute myeloid leukemia. Genes and Immunity. 2015;16(1):83-88.

Dieter C, Brondani LA, Leitao CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS One. 2022;17(7): e0270627.

Pinedo PJ, Galvao KN, Seabury CM. Innate immune gene variation and differential susceptibility to uterine diseases in Holstein cows.Theriogenol. 2013;80(4):384-390.

Dubey PK, Goyal S, Kathiravan P, Mishra BP, Gahlawat SK, Kataria RS. Sequence characterization of river buffalo Toll‐like receptor genes 1–10 reveals distinct relationship with cattle and sheep. Inter. J. immunogenet. 2013;40(2):140-148.

Karaali ZE, Candan G, Aktuğlu MB, Mustafa Velet M, Ergen A. Toll-Like Receptor 2 (TLR-2) gene polymorphisms in type 2 diabetes mellitus. Cell J. 2019;20(4):559–563.

Hu L, Tao H, Tao X, Xiaolong Tang X, XuC. TLR2 Arg753Gln gene polymorphism associated with tuberculosis susceptibility: An Updated Meta-Analysis. BioMed. Res. Inter. 2019:1- 9.

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen‐2. Current Protocols in Human Genet. 2013;7-20.

Allen SJ, Schwartz AM, Bush MF. Effects of polarity on the structures and charge states of native-like proteins and protein complexes in the gas phase. Anal. Chem. 2013;85(24):12055-1206.

White SN, Taylor KH, Abbey CA, Gill CA, Womack JE. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. Proc. Nat. Acad. Sci. 2003;100(18):10364-10369.

Zhang XY, Lei M, Xie L, Zhang CX, Zheng J, Yang C, Deng XD, Li JL, Huang DP, Xie XH. Detection of polymorphisms and protein domain architectures in rabbit toll-like receptor 2. World Rabbit Sci. 2014; 22(1):83-90.

Shinkai H, Tanaka M, Morozumi T, Eguchi-Ogawa T, Okumura N, Muneta Y, Awata T, Uenishi H. Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenet. 2006;58(4):324-330.

Seabury CM, Cargill EJ, Womack JE. Sequence variability and protein domain architectures for bovine Toll-like receptors 1, 5, and 10. Genomics. 2007;90(4):502-515.

Tapping RI, Omueti KO, Johnson CM. Genetic polymorphisms within the human Toll-like receptor 2 subfamily. Bioch. Society Transact. 2007;35(6):1445- 1448.

Cuscó A, Sánchez A, Altet L, Ferrer L, Francino O. Non-synonymous genetic variation in exonic regions of canine Toll-like receptors. Canine Genet. Epidemiol. 2014;1(1):11.

Matsushima N, Tanaka T, Enkhbayar P, Mikami T, Taga M, Yamada K, Kuroki Y. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors. BMC Genomics. 2007;8(1): 124.

Ciampolini R, Ciani E, Roux M, Cecchi F, Mazanti E, Tancredi M, Castellana E, Presciuttini S, Amarger V. Haplotype reconstruction from unphased genotype data at the bovine PRKAG3 gene. Annali della Facoltà di Med. Vet. 2007;59:81-86.

Osman NM, Abou Mossallam AA, El Seedy FR, Mahfouz ER. Single Nucleotide Polymorphisms in TLR4 Gene and Endometritis Resistance in River Buffalo (Bubalus bubalis). Jordan J. Biol. Sci. 2018;11(5):577-583.

Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M, Rodrigues SD, Li S, Hansen JA, Zhao LP, Aderem A. Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. New England J. Med. 2008;359(17):1766-1777.

Jann OC, King A, CorralesN, Anderson SI, Jensen K, Ait-Ali T, Tang H, Wu C, Cockett NE, Archibald AL, Glass EJ. Comparative genomics of Toll-like receptor signalling in five species. BMC Genomics. 2009; 10(1):1.